Return to search

Disease warning systems for rational management of Asian soybean rust in Brazil / Sistemas de alerta fitossanitário para o manejo racional da ferrugem asiática da soja no Brasil

The Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, may promote significant damages in soybean crop. The disease is mainly controlled by sequential applications of fungicides following a calendarbased system. However, this practice disregards the weather favorability to recommend spraying to ASR control. The proposition of fungicide schemes to make the ASR control more efficient can be reached by the use of diseasewarning systems. Thus, the current study aimed to assess the performance of different disease-warning systems to determine better fungicide spraying schemes for the ASR control. The experiment was conducted in Piracicaba, SP, Ponta Grossa, PR, Campo Verde and Pedra Preta, MT, Brazil, over the 2014/2015 and 2015/2016 soybean growing seasons. The treatments were: Unsprayed check treatment; Calendar-based sprays in a 14-day interval from R1 stage (CALEND); Disease warning system based on rainfall data with less conservative threshold (PREC_1 - 80% severity cut-off); and more conservative threshold (PREC_2 - 50% severity cut-off); Disease warning system based on air temperature and leaf wetness duration with less conservative threshold (TLWD_1 - 6 lesions cm-2) and more conservative threshold (TLWD_2 - 9 lesions cm-2). The results confirmed that weather conditions in the field trials were favorable to ASR progress. Among the weather elements correlated to severity leaf wetness duration, cumulative rainfall and air temperature during leaf wetness duration influenced positively the ASR. By testing warning systems to control ASR it ones was evidenced that those based on rainfall data presented highest performances. PREC_2 showed a high performance considering all sowing dates; whereas, PREC_1 was better treatment during sowing dates between October and November. The TLWD diseasewarning systems, with both thresholds, overestimated the ASR, recommending more sprays compared to other treatments. Empirical models were efficient for estimation of LWD in Ponta Grossa, Campo Verde and Pedra Preta. High performances in estimating LWD were identified by using number of hours with relative humidity above 90% (NHRH>=90%), being these able to be use as input in the disease-warning systems (RMSE less than 2.0 h). The profitability of use rainfall based warning systems was conditioned by variations in the rainfalls regimes at the studied sites. PREC_1 and PREC_2 presented the highest relative yield gains in relation to CALEND during the period with the highest rainfalls in Piracicaba, Campo Verde and Pedra Preta. However, in Ponta Grossa, the rainfall based warning systems were not effective to control ASR. / A ferrugem asiática da soja (ASR), causada pelo fungo Phakopsora pachyrhizi, pode ocasionar elevados prejuízos às lavouras de soja. O controle da doença é realizado por meio de aplicações sequenciais de fungicidas em sistema calendarizado. Este, por sua vez, não considera a favorabilidade climática para recomendar pulverizações. A proposição de esquemas de pulverização mais eficientes pode ser obtida pelo uso de sistemas de alerta fitossanitário. Assim, objetivou-se avaliar o desempenho de diferentes sistemas de alerta fitossanitário, visando à determinação de esquemas de pulverização de defensivos químicos para o controle de ASR nos estados de São Paulo, Paraná e Mato Grosso, Brasil. O experimento foi conduzido em Piracicaba, SP, Ponta Grossa, PR, Campo Verde e Pedra Preta, MT, Brasil ao longo das safras de 2014/2015 e 2015/2016. Os tratamentos foram: Testemunha (sem aplicação); Aplicações calendarizadas a partir de R1, espaçadas em 14 dias (CALEND); Sistema de alerta baseado em dados de chuva limiar menos conservador (PREC_1 - 80% de severidade) e mais conservador (PREC_2 - 50% de severidade); Sistema de alerta baseado em dados de temperatura do ar e a duração do período de molhamento foliar com limiar menos conservador (TDPM_1 - 6 lesões cm2) e com limiar menos conservador (TDPM_2 - 9 lesões cm2). Os resultados obtidos confirmaram que as condições meteorológicas nas localidades estudadas foram favoráveis para o progresso da ASR. Verificou-se que a duração do período de molhamento foliar (DPM), temperatura do ar durante o molhamento e chuva acumulada influenciaram positivamente a ASR. Ao testar os sistemas de alerta no controle de ASR verificou-se que aqueles baseados em dados de chuva apresentaram os melhores desempenhos. O PREC_2 apresentou melhor desempenho em análise geral considerando todas as épocas de semeadura, ao passo que PREC_1 foi melhor quando em semeadura de outubro a novembro. Os sistemas TDPM, com ambos os limiares de ação, superestimaram os valores de ASR acusando um número maior de pulverizações comparada aos demais tratamentos. Modelos empíricos mostraram ser eficientes na estimação da DPM em Ponta Grossa, Campo Verde e Pedra Preta. Estimações pelo método de número de horas com umidade relativa acima de 90% (NHUR>=90%) apresentaram RMSE menor que 2,0 h viabilizando o uso da DPM estimada como variável de entrada de sistema de alerta. A rentabilidade do uso dos sistemas de alerta baseado em dados de chuva foi condicionada às variações no regime dessa variável nas localidades estudadas. PREC_1 e PREC_2 apresentaram maior ganho de produtividade em relação à CALEND durante o período com maior índice pluviométrico nas localidades de Piracicaba, Campo Verde e Pedra Preta. Em contrapartida os sistemas de alerta não foram efetivos no controle de ASR em Ponta Grossa.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25072018-163838
Date09 March 2018
CreatorsGustavo Castilho Beruski
ContributorsPaulo Cesar Sentelhas, Gil Miguel de Sousa Camara, Mario Jose Pedro Junior, André Belmont Pereira
PublisherUniversidade de São Paulo, Engenharia de Sistemas Agrícolas, USP, BR
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds