Doctor en Ciencias de la Ingeniería, Mención Fluiodinámica / Con el fin de mejorar la comprensión de la dinámica no-lineal de las oscilaciones internas de gran escala observadas en lagos estratificados afectados por la rotación terrestre, se investigó la degeneración de 'ondas internas gravitacionales' (OIG) en un dominio idealizado, estratificado en dos capas separadas por una zona de transición continua de espesor dado.
Para obtener soluciones teóricas y construir condiciones iniciales de OIG, tales como ondas de Kelvin y Poincaré, se utilizó la teoría lineal de modos normales en un dominio cilíndrico rotatorio estratificado en dos capas. Estas soluciones fueron utilizadas para analizar experimentos de laboratorio y realizar simulaciones numéricas directas, que permitieron estudiar la degeneración de las OIG.
En primer lugar, se analizaron resultados de laboratorio obtenidos de experimentos desarrollados en una mesa rotatoria. A partir de estos resultados, se estudió la evolución temporal de las OIG de gran escala en un flujo estratificado en dos capas bajo diferentes escenarios de estratificación y rotación. El flujo inducido mediante la relajación de una inclinación inicial lineal de la interfaz de densidad, generó ondas gravitacionales de tipo Kelvin y Poincaré, en respuesta al efecto de la rotación. Los resultados mostraron experimentalmente que la onda interna Kelvin fundamental degenera en un paquete de ondas tipo solitarias, producto del empinamiento y dispersión no-hidrostática. La rotación del medio determina la forma y estructura de estas ondas tipo solitarias. En particular, a medida que la rotación se incrementaba, las escalas de longitud de la onda tipo solitaria líder fueron muy similares a ondas no-lineales tipo KdV. Además, los resultados experimentales mostraron que existe una interacción no-lineal entre las ondas Kelvin y Poincaré, que podría inducir un estado pseudo-resonante entre ambas ondas y la transferencia de energía desde las modos fundamentales a sub-modos. En general, se observó que las condiciones de estratificación/rotación tienen un efecto importante en la intensidad de los procesos no lineales, los que a su vez mostraron un impacto directo en la tasa de decaimiento de la onda Kelvin. Esta tasa de decaimiento mostró concordancia con el decaimiento de Ekman y un incremento del decaimiento a medida que las no-linealidades se intensificaban.
En segundo lugar, se estudió la evolución de la onda interna Kelvin fundamental a través de simulaciones numéricas directas, con un enfoque híper-viscoso/difusivo, para condiciones de rotación y estratificación similares a las utilizadas en los experimentos de laboratorio. La dinámica de la onda fue controlada mediante el incremento de la amplitud inicial, forzando así la tendencia al empinamiento y el flujo de corte en la vecindad de la interfaz de densidad. Los resultados mostraron la existencia de diferentes regímenes, desde un régimen laminar amortiguado, en el que la onda Kelvin retuvo su carácter lineal, hasta un régimen no-lineal de transición a la turbulencia, en el que la dinámica no-lineal y no-hidrostática de la onda Kelvin indujo inestabilidades hidrodinámicas intermitentes en la interfaz de densidad. En el régimen de transición, se observaron parches de turbulencia producidos por quiebres parciales de la onda Kelvin en el interior de un radio interno de Rossby medido desde el borde horizontal hacia el interior. Estos parches se asociaron al crecimiento y colapso tanto de inestabilidades inducidas por corte, como de inestabilidades convectivas en la región del frente y cola de las ondas más energéticas.
El estudio permitió concluir que la amplitud de onda, la estratificación y la rotación del medio juegan roles importantes en la degeneración de las OIG de gran escala en lagos. Tanto la estructura de la estratificación como la amplitud de la onda tienen un efecto directo en el empinamiento de la onda, y en consecuencia un efecto en la concentración de energía en su dirección de propagación; mientras que la rotación tiene un efecto directo en la concentración de energía en la escala transversal de la propagación de la onda, la que es proporcional al radio interno de Rossby. Ambos mecanismos de concentración de energía generan una intensificación local de los procesos no-lineales, los cuales, a su vez, intensifican la actividad turbulenta y la mezcla en el medio fluido.
Identifer | oai:union.ndltd.org:UCHILE/oai:repositorio.uchile.cl:2250/136470 |
Date | January 2015 |
Creators | Ulloa Sánchez, Hugo Nicolás |
Contributors | Niño Campos, Yarko, Fuente Stranger, Alberto de la, Winters, Kraig, Facultad de Ciencias Físicas y Matemáticas, Escuela de Post-Grado, Escauriaza Mesa, Cristián, Falcón Beas, Claudio |
Publisher | Universidad de Chile |
Source Sets | Universidad de Chile |
Language | English |
Detected Language | Spanish |
Type | Tesis |
Rights | Atribución-NoComercial-SinDerivadas 3.0 Chile, http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ |
Page generated in 0.0113 seconds