Return to search

Classification of Repeated Measurement Data Using Growth Curves and Neural Networks

This thesis focuses on statistical and machine learning methods designed for sequential and repeated measurement data. We start off by considering the classic general linear model (MANOVA) followed by its generalization, the growth curve model (GMANOVA), designed for analysis of repeated measurement data. By considering a binary classification problem of normal data together with the corresponding maximum likelihood estimators for the growth curve model, we demonstrate how a classification rule based on linear discriminant analysis can be derived which can be used for repeated measurement data in a meaningful way. We proceed to the topics of neural networks which serve as our second method of classification. The reader is introduced to classic neural networks and relevant subtopics are discussed. We present a generalization of the classic neural network model to the recurrent neural network model and the LSTM model which are designed for sequential data. Lastly, we present three types of data sets with an total of eight cases where the discussed classification methods are tested. / Den här uppsatsen introducerar klassificeringsmetoder skapade för data av typen upprepade mätningar och sekventiell data. Den klassiska MANOVA modellen introduceras först som en grund för den mer allmäna tillväxtkurvemodellen(GMANOVA), som i sin tur används för att modellera upprepade mätningar på ett meningsfullt sätt. Under antagandet av normalfördelad data så härleds en binär klassificeringsmetod baserad på linjär diskriminantanalys, som tillsammans med maximum likelihood-skattningar från tillväxtkurvemodellen ger en binär klassificeringsregel för data av typen upprepade mätningarn. Vi fortsätter med att introducera läsaren för klassiska neurala nätverk och relevanta ämnen diskuteras. Vi generaliserar teorin kring neurala nätverk till typen "recurrent" neurala nätverk och LSTM som är designade för sekventiell data. Avslutningsvis så testas klassificeringsmetoderna på tre typer av data i totalt åtta olika fall.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-190738
Date January 2022
CreatorsAndersson, Kasper
PublisherLinköpings universitet, Tillämpad matematik, Linköpings universitet, Tekniska fakulteten
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds