• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assisted Annotation of Sequential Image Data With CNN and Pixel Tracking / Assisterande annotering av sekvensiell bilddata med CNN och pixelspårning

Chan, Jenny January 2021 (has links)
In this master thesis, different neural networks have investigated annotating objects in video streams with partially annotated data as input. Annotation in this thesis is referring to bounding boxes around the targeted objects. Two different methods have been used ROLO and GOTURN, object detection with tracking respective object tracking with pixels. The data set used for validation is surveillance footage consists of varying image resolution, image size and sequence length. Modifications of the original models have been executed to fit the test data.  Promising results for modified GOTURN were shown, where the partially annotated data was used as assistance in tracking. The model is robust and provides sufficiently accurate object detections for practical use. With the new model, human resources for image annotation can be reduced by at least half. / I detta examensarbete har olika neurala nätverk undersökts för att annotera objekt i videoströmmar med partiellt annoterade data som indata. Annotering i denna uppsats syftar på avgränsninglådor runt de eftertraktade objekten. Två olika metoder har använts ROLO och GOTURN, objektdetektering med spårning respektive objektspårning av pixlar. Datasetet som användes för validering är videoströmmar från övervakningskameror i varierande bildupplösning, bildstorlek och sekvenslängd. Modifieringar av ursprungsmodellerna har utförts för att anpassa testdatat. Lovande resultat för modifierade GOTURN visades, där den partiella annoterade datan användes som assistans vid spårning. Modellen är robust och ger tillräckligt noggranna objektdetektioner för praktiskt bruk. Med den nya modellen kan mänskliga resurser för bild annotering reduceras med minst hälften.
2

Anomaly Detection in Streaming Data from a Sensor Network / Anomalidetektion i strömmande data från sensornätverk

Vignisson, Egill January 2019 (has links)
In this thesis, the use of unsupervised and semi-supervised machine learning techniques was analyzed as potential tools for anomaly detection in the sensor network that the electrical system in a Scania truck is comprised of. The experimentation was designed to analyse the need for both point and contextual anomaly detection in this setting. For the point anomaly detection the method of Isolation Forest was experimented with and for contextual anomaly detection two different recurrent neural network architectures using Long Short Term Memory units was relied on. One model was simply a many to one regression model trained to predict a certain signal, while the other was an encoder-decoder network trained to reconstruct a sequence. Both models were trained in an semi-supervised manner, i.e. on data that only depicts normal behaviour, which theoretically should lead to a performance drop on abnormal sequences resulting in higher error terms. In both setting the parameters of a Gaussian distribution were estimated using these error terms which allowed for a convenient way of defining a threshold which would decide if the observation would be flagged as anomalous or not. Additional experimentation's using an exponential weighted moving average over a number of past observations to filter the signal was also conducted. The models performance on this particular task was very different but the regression model showed a lot of promise especially when combined with a filtering preprocessing step to reduce the noise in the data. However the model selection will always be governed by the nature the particular task at hand so the other methods might perform better in other settings. / I den här avhandlingen var användningen av oövervakad och halv-övervakad maskininlärning analyserad som ett möjligt verktyg för att upptäcka avvikelser av anomali i det sensornätverk som elektriska systemet en Scanialastbil består av. Experimentet var konstruerat för att analysera behovet av både punkt och kontextuella avvikelser av anomali i denna miljö. För punktavvikelse av anomali var metoden Isolation Forest experimenterad med och för kontextuella avvikelser av anomali användes två arkitekturer av återkommande neurala nätverk. En av modellerna var helt enkelt många-till-en regressionmodell tränad för att förutspå ett visst märke, medan den andre var ett kodare-avkodare nätverk tränat för att rekonstruera en sekvens.Båda modellerna blev tränade på ett halv-övervakat sätt, d.v.s. på data som endast visar normalt beteende, som teoretiskt skulle leda till minskad prestanda på onormala sekvenser som ger ökat antal feltermer. I båda fallen blev parametrarna av en Gaussisk distribution estimerade på grund av dessa feltermer som tillåter ett bekvämt sätt att definera en tröskel som skulle bestämma om iakttagelsen skulle bli flaggad som en anomali eller inte. Ytterligare experiment var genomförda med exponentiellt viktad glidande medelvärde över ett visst antal av tidigare iakttagelser för att filtera märket. Modellernas prestanda på denna uppgift var välidt olika men regressionmodellen lovade mycket, särskilt kombinerad med ett filterat förbehandlingssteg för att minska bruset it datan. Ändå kommer modelldelen alltid styras av uppgiftens natur så att andra metoder skulle kunna ge bättre prestanda i andra miljöer.
3

Basil-GAN / Basilika-GAN

Risberg, Jonatan January 2022 (has links)
Developments in computer vision has sought to design deep neural networks which trained on a large set of images are able to generate high quality artificial images which share semantic qualities with the original image set. A pivotal shift was made with the introduction of the generative adversarial network (GAN) by Goodfellow et al.. Building on the work by Goodfellow more advanced models using the same idea have shown great improvements in terms of both image quality and data diversity. GAN models generate images by feeding samples from a vector space into a generative neural network. The structure of these so called latent vector samples show to correspond to semantic similarities of their corresponding generated images. In this thesis the DCGAN model is trained on a novel data set consisting of image sequences of the growth process of basil plants from germination to harvest. We evaluate the trained model by comparing the DCGAN performance on benchmark data sets such as MNIST and CIFAR10 and conclude that the model trained on the basil plant data set achieved similar results compared to the MNIST data set and better results in comparison to the CIFAR10 data set. To argue for the potential of using more advanced GAN models we compare the results from the DCGAN model with the contemporary StyleGAN2 model. We also investigate the latent vector space produced by the DCGAN model and confirm that in accordance with previous research, namely that the DCGAN model is able to generate a latent space with data specific semantic structures. For the DCGAN model trained on the data set of basil plants, the latent space is able to distinguish between images of early stage basil plants from late stage plants in the growth phase. Furthermore, utilizing the sequential semantics of the basil plant data set, an attempt at generating an artificial growth sequence is made using linear interpolation. Finally we present an unsuccessful attempt at visualising the latent space produced by the DCGAN model using a rudimentary approach at inverting the generator network function. / Utvecklingen inom datorseende har syftat till att utforma djupa neurala nätverk som tränas på en stor mängd bilder och kan generera konstgjorda bilder av hög kvalitet med samma semantiska egenskaper som de ursprungliga bilderna. Ett avgörande skifte skedde när Goodfellow et al. introducerade det generativa adversariella nätverket (GAN). Med utgångspunkt i Goodfellows arbete har flera mer avancerade modeller som använder samma idé uppvisat stora förbättringar när det gäller både bildkvalitet och datamångfald. GAN-modeller genererar bilder genom att mata in vektorer från ett vektorrum till ett generativt neuralt nätverk. Strukturen hos dessa så kallade latenta vektorer visar sig motsvara semantiska likheter mellan motsvarande genererade bilder. I detta examensarbete har DCGAN-modellen tränats på en ny datamängd som består av bildsekvenser av basilikaplantors tillväxtprocess från groning till skörd. Vi utvärderar den tränade modellen genom att jämföra DCGAN-modellen mot referensdataset som MNIST och CIFAR10 och drar slutsatsen att DCGAN tränad på datasetet för basilikaväxter uppnår liknande resultat jämfört med MNIST-dataset och bättre resultat jämfört med CIFAR10-datasetet. För att påvisa potentialen av att använda mer avancerade GAN-modeller jämförs resultaten från DCGAN-modellen med den mer avancerade StyleGAN2-modellen. Vi undersöker också det latenta vektorrum som produceras av DCGAN-modellen och bekräftar att DCGAN-modellen i enlighet med tidigare forskning kan generera ett latent rum med dataspecifika semantiska strukturer. För DCGAN-modellen som tränats på datamängden med basilikaplantor lyckas det latenta rummet skilja mellan bilder av basilikaplantor i tidiga stadier och sena stadier av plantor i tillväxtprocessen. Med hjälp av den sekventiella semantiken i datamängden för basilikaväxter gjörs dessutom ett försök att generera en artificiell tillväxtsekvens med hjälp av linjär interpolation. Slutligen presenterar vi ett misslyckat försök att visualisera det latenta rummet som produceras av DCGAN-modellen med hjälp av ett rudimentärt tillvägagångssätt för att invertera den generativa nätverksfunktionen.
4

Classification of Repeated Measurement Data Using Growth Curves and Neural Networks

Andersson, Kasper January 2022 (has links)
This thesis focuses on statistical and machine learning methods designed for sequential and repeated measurement data. We start off by considering the classic general linear model (MANOVA) followed by its generalization, the growth curve model (GMANOVA), designed for analysis of repeated measurement data. By considering a binary classification problem of normal data together with the corresponding maximum likelihood estimators for the growth curve model, we demonstrate how a classification rule based on linear discriminant analysis can be derived which can be used for repeated measurement data in a meaningful way. We proceed to the topics of neural networks which serve as our second method of classification. The reader is introduced to classic neural networks and relevant subtopics are discussed. We present a generalization of the classic neural network model to the recurrent neural network model and the LSTM model which are designed for sequential data. Lastly, we present three types of data sets with an total of eight cases where the discussed classification methods are tested. / Den här uppsatsen introducerar klassificeringsmetoder skapade för data av typen upprepade mätningar och sekventiell data. Den klassiska MANOVA modellen introduceras först som en grund för den mer allmäna tillväxtkurvemodellen(GMANOVA), som i sin tur används för att modellera upprepade mätningar på ett meningsfullt sätt. Under antagandet av normalfördelad data så härleds en binär klassificeringsmetod baserad på linjär diskriminantanalys, som tillsammans med maximum likelihood-skattningar från tillväxtkurvemodellen ger en binär klassificeringsregel för data av typen upprepade mätningarn. Vi fortsätter med att introducera läsaren för klassiska neurala nätverk och relevanta ämnen diskuteras. Vi generaliserar teorin kring neurala nätverk till typen "recurrent" neurala nätverk och LSTM som är designade för sekventiell data. Avslutningsvis så testas klassificeringsmetoderna på tre typer av data i totalt åtta olika fall.

Page generated in 0.0805 seconds