Pfeffermann, Krieger e Rinott (1998) apresentaram uma metodologia para modelar processos de amostragem que pode ser utilizada para avaliar se este processo de amostragem é informativo. Neste cenário, as probabilidades de seleção da amostra são aproximadas por uma função polinomial dependendo das variáveis resposta e concomitantes. Nesta abordagem, nossa principal proposta é investigar a aplicação do teste de significância FBST (Full Bayesian Significance Test), apresentado por Pereira e Stern (1999), como uma ferramenta para testar a ignorabilidade amostral, isto é, para avaliar uma relação de significância entre as probabilidades de seleção da amostra e a variável resposta. A performance desta modelagem estatística é testada com alguns experimentos computacionais. / Pfeffermann, Krieger and Rinott (1998) introduced a framework for modeling sampling processes that can be used to assess if a sampling process is informative. In this setting, sample selection probabilities are approximated by a polynomial function depending on outcome and auxiliary variables. Within this framework, our main purpose is to investigate the application of the Full Bayesian Significance Test (FBST), introduced by Pereira and Stern (1999), as a tool for testing sampling ignorability, that is, to detect a significant relation between the sample selection probabilities and the outcome variable. The performance of this statistical modelling framework is tested with some simulation experiments.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19082013-161233 |
Date | 28 May 2013 |
Creators | Azerêdo, Daniel Mendes |
Contributors | Stern, Julio Michael |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0026 seconds