• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • Tagged with
  • 21
  • 15
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FBST seqüencial / Sequential FBST

Arruda, Marcelo Leme de 04 June 2012 (has links)
O FBST (Full Bayesian Significance Test) é um instrumento desenvolvido por Pereira e Stern (1999) com o objetivo de apresentar uma alternativa bayesiana aos testes de hipóteses precisas. Desde sua introdução, o FBST se mostrou uma ferramenta muito útil para a solução de problemas para os quais não havia soluções freqüentistas. Esse teste, contudo, depende de que a amostra seja coletada uma única vez, após o que a distribuição a posteriori dos parâmetros é obtida e a medida de evidência, calculada. Ensejadas por esse aspecto, são apresentadas abordagens analíticas e computacionais para a extensão do FBST ao contexto de decisão seqüencial (DeGroot, 2004). É apresentado e analisado um algoritmo para a execução do FBST Seqüencial, bem como o código-fonte de um software baseado nesse algoritmo. / FBST (Full Bayesian Significance Test) is a tool developed by Pereira and Stern (1999), to show a bayesian alternative to the tests of precise hypotheses. Since its introduction, FBST has shown to be a very useful tool to solve problems to which there were no frequentist solutions. This test, however, needs that the sample be collected just one time and, after this, the parameters posterior distribution is obtained and the evidence measure, computed. Suggested by this feature, there are presented analytic and computational approaches to the extension of the FBST to the sequential decision context (DeGroot, 2004). It is presented and analyzed an algorithm to execute the Sequential FBST, as well as the source code of a software based on this algorithm.
2

FBST seqüencial / Sequential FBST

Marcelo Leme de Arruda 04 June 2012 (has links)
O FBST (Full Bayesian Significance Test) é um instrumento desenvolvido por Pereira e Stern (1999) com o objetivo de apresentar uma alternativa bayesiana aos testes de hipóteses precisas. Desde sua introdução, o FBST se mostrou uma ferramenta muito útil para a solução de problemas para os quais não havia soluções freqüentistas. Esse teste, contudo, depende de que a amostra seja coletada uma única vez, após o que a distribuição a posteriori dos parâmetros é obtida e a medida de evidência, calculada. Ensejadas por esse aspecto, são apresentadas abordagens analíticas e computacionais para a extensão do FBST ao contexto de decisão seqüencial (DeGroot, 2004). É apresentado e analisado um algoritmo para a execução do FBST Seqüencial, bem como o código-fonte de um software baseado nesse algoritmo. / FBST (Full Bayesian Significance Test) is a tool developed by Pereira and Stern (1999), to show a bayesian alternative to the tests of precise hypotheses. Since its introduction, FBST has shown to be a very useful tool to solve problems to which there were no frequentist solutions. This test, however, needs that the sample be collected just one time and, after this, the parameters posterior distribution is obtained and the evidence measure, computed. Suggested by this feature, there are presented analytic and computational approaches to the extension of the FBST to the sequential decision context (DeGroot, 2004). It is presented and analyzed an algorithm to execute the Sequential FBST, as well as the source code of a software based on this algorithm.
3

Modelos de regressão sobre dados composicionais / Regression model for Compositional data

Camargo, André Pierro de 09 December 2011 (has links)
Dados composicionais são constituídos por vetores cujas componentes representam as proporções de algum montante, isto é: vetores com entradas positivas cuja soma é igual a 1. Em diversas áreas do conhecimento, o problema de estimar as partes $y_1, y_2, \\dots, y_D$ correspondentes aos setores $SE_1, SE_2, \\dots, SE_D$, de uma certa quantidade $Q$, aparece com frequência. As porcentagens $y_1, y_2, \\dots, y_D$ de intenção de votos correspondentes aos candidatos $Ca_1, Ca_2, \\dots, Ca_D$ em eleições governamentais ou as parcelas de mercado correspondentes a industrias concorrentes formam exemplos típicos. Naturalmente, é de grande interesse analisar como variam tais proporções em função de certas mudanças contextuais, por exemplo, a localização geográfica ou o tempo. Em qualquer ambiente competitivo, informações sobre esse comportamento são de grande auxílio para a elaboração das estratégias dos concorrentes. Neste trabalho, apresentamos e discutimos algumas abordagens propostas na literatura para regressão sobre dados composicionais, assim como alguns métodos de seleção de modelos baseados em inferência bayesiana. \\\\ / Compositional data consist of vectors whose components are the proportions of some whole. The problem of estimating the portions $y_1, y_2, \\dots, y_D$ corresponding to the pieces $SE_1, SE_2, \\dots, SE_D$ of some whole $Q$ is often required in several domains of knowledge. The percentages $y_1, y_2, \\dots, y_D$ of votes corresponding to the competitors $Ca_1, Ca_2, \\dots, Ca_D$ in governmental elections or market share problems are typical examples. Of course, it is of great interest to study the behavior of such proportions according to some contextual transitions. In any competitive environmet, additional information of such behavior can be very helpful for the strategists to make proper decisions. In this work we present and discuss some approaches proposed by different authors for compositional data regression as well as some model selection methods based on bayesian inference.\\\\
4

Um ambiente computacional para um teste de significância bayesiano / An computational environment for a bayesian significance test

Silvio Rodrigues de Faria Junior 09 October 2006 (has links)
Em 1999, Pereira e Stern [Pereira and Stern, 1999] propuseram o Full Baye- sian Significance Test (FBST), ou Teste de Significancia Completamente Bayesiano, especialmente desenhado para fornecer um valor de evidencia dando suporte a uma hip otese precisa H. Apesar de possuir boas propriedades conceituais e poder tratar virtual- mente quaisquer classes de hip oteses precisas em modelos param etricos, a difus ao deste m etodo na comunidade cient fica tem sido fortemente limitada pela ausencia de um ambiente integrado onde o pesquisador possa formular e implementar o teste de seu interesse. O objetivo deste trabalho e apresentar uma proposta de implementa c ao de um ambiente integrado para o FBST, que seja suficientemente flex vel para tratar uma grande classe de problemas. Como estudo de caso, apresentamos a formula c ao do FBST para um problema cl assico em gen etica populacional, o Equil brio de Hardy-Weinberg / In 1999, Pereira and Stern [Pereira and Stern, 1999] introduced the Full Bayesian Significance Test (FBST), developed to give a value of evidence for a precise hypothesis H. Despite having good conceptual properties and being able to dealing with virtually any classes of precise hypotheses under parametric models, the FBST did not achieve a large difusion among the academic community due to the abscence of an computational environment where the researcher can define and assess the evidence for hypothesis under investigation. In this work we propose an implementation of an flexible computatio- nal environment for FBST and show a case study in a classical problem in population genetics, the Hardy-Weinberg Equilibrium Law.
5

Um ambiente computacional para um teste de significância bayesiano / An computational environment for a bayesian significance test

Faria Junior, Silvio Rodrigues de 09 October 2006 (has links)
Em 1999, Pereira e Stern [Pereira and Stern, 1999] propuseram o Full Baye- sian Significance Test (FBST), ou Teste de Significancia Completamente Bayesiano, especialmente desenhado para fornecer um valor de evidencia dando suporte a uma hip otese precisa H. Apesar de possuir boas propriedades conceituais e poder tratar virtual- mente quaisquer classes de hip oteses precisas em modelos param etricos, a difus ao deste m etodo na comunidade cient fica tem sido fortemente limitada pela ausencia de um ambiente integrado onde o pesquisador possa formular e implementar o teste de seu interesse. O objetivo deste trabalho e apresentar uma proposta de implementa c ao de um ambiente integrado para o FBST, que seja suficientemente flex vel para tratar uma grande classe de problemas. Como estudo de caso, apresentamos a formula c ao do FBST para um problema cl assico em gen etica populacional, o Equil brio de Hardy-Weinberg / In 1999, Pereira and Stern [Pereira and Stern, 1999] introduced the Full Bayesian Significance Test (FBST), developed to give a value of evidence for a precise hypothesis H. Despite having good conceptual properties and being able to dealing with virtually any classes of precise hypotheses under parametric models, the FBST did not achieve a large difusion among the academic community due to the abscence of an computational environment where the researcher can define and assess the evidence for hypothesis under investigation. In this work we propose an implementation of an flexible computatio- nal environment for FBST and show a case study in a classical problem in population genetics, the Hardy-Weinberg Equilibrium Law.
6

Modelos de regressão sobre dados composicionais / Regression model for Compositional data

André Pierro de Camargo 09 December 2011 (has links)
Dados composicionais são constituídos por vetores cujas componentes representam as proporções de algum montante, isto é: vetores com entradas positivas cuja soma é igual a 1. Em diversas áreas do conhecimento, o problema de estimar as partes $y_1, y_2, \\dots, y_D$ correspondentes aos setores $SE_1, SE_2, \\dots, SE_D$, de uma certa quantidade $Q$, aparece com frequência. As porcentagens $y_1, y_2, \\dots, y_D$ de intenção de votos correspondentes aos candidatos $Ca_1, Ca_2, \\dots, Ca_D$ em eleições governamentais ou as parcelas de mercado correspondentes a industrias concorrentes formam exemplos típicos. Naturalmente, é de grande interesse analisar como variam tais proporções em função de certas mudanças contextuais, por exemplo, a localização geográfica ou o tempo. Em qualquer ambiente competitivo, informações sobre esse comportamento são de grande auxílio para a elaboração das estratégias dos concorrentes. Neste trabalho, apresentamos e discutimos algumas abordagens propostas na literatura para regressão sobre dados composicionais, assim como alguns métodos de seleção de modelos baseados em inferência bayesiana. \\\\ / Compositional data consist of vectors whose components are the proportions of some whole. The problem of estimating the portions $y_1, y_2, \\dots, y_D$ corresponding to the pieces $SE_1, SE_2, \\dots, SE_D$ of some whole $Q$ is often required in several domains of knowledge. The percentages $y_1, y_2, \\dots, y_D$ of votes corresponding to the competitors $Ca_1, Ca_2, \\dots, Ca_D$ in governmental elections or market share problems are typical examples. Of course, it is of great interest to study the behavior of such proportions according to some contextual transitions. In any competitive environmet, additional information of such behavior can be very helpful for the strategists to make proper decisions. In this work we present and discuss some approaches proposed by different authors for compositional data regression as well as some model selection methods based on bayesian inference.\\\\
7

Arbitragem nos mercados financeiros: uma proposta bayesiana de verificação / Arbitrage in financial markets: a Bayesian approach for verification

Cerezetti, Fernando Valvano 20 May 2013 (has links)
Hipóteses precisas são características naturais das teorias econômicas de determinação do valor ou preço de ativos financeiros. Nessas teorias, a precisão das hipóteses assume a forma do conceito de equilíbrio ou da não arbitragem. Esse último possui um papel fundamental nas teorias de finanças. Sob certas condições, o Teorema Fundamental do Apreçamento de Ativos estabelece um sistema único e coerente para valorização dos ativos em mercados não arbitrados, valendo-se para tal das formulações para processos de martingal. A análise da distribuição estatística desses ativos financeiros ajuda no entendimento de como os participantes se comportam nos mercados, gerando assim as condições para se arbitrar. Nesse sentido, a tese defendida é a de que o estudo da hipótese de não arbitragem possui contrapartida científica, tanto do lado teórico quanto do empírico. Utilizando-se do modelo estocástico Variância Gama para os preços dos ativos, o teste Bayesiano FBST é implementado com o intuito de se verificar a existência da arbitragem nos mercados, potencialmente expressa nos parâmetros destas densidades. Especificamente, a distribuição do Índice Bovespa é investigada, com os parâmetros risco-neutros sendo estimados baseandose nas opções negociadas no Segmento de Ações e no Segmento de Derivativos da BM&FBovespa. Os resultados aparentam indicar diferenças estatísticas significantes em alguns períodos de tempo. Até que ponto esta evidência é a expressão de uma arbitragem perene nesses mercados ainda é uma questão em aberto. / Precise hypotheses are natural characteristics of the economic theories for determining the value or prices of financial assets. Within these theories the precision is expressed in terms of equilibrium and non-arbitrage hypotheses. The former concept plays an essential role in the theories of finance. Under certain conditions, the Fundamental Theorem of Asset Pricing establishes a coherent and unique asset pricing framework in non-arbitraged markets, grounded on martingales processes. Accordingly, the analysis of the statistical distributions of financial assets can assist in understanding how participants behave in the markets, and may or may not engender conditions to arbitrage. On this regard, the dissertation proposes that the study of non-arbitrage hypothesis has a scientific counterparty, theoretically and empirically. Using a variance gamma stochastic model for prices, the Bayesian test FBST is conducted to verify the presence of arbitrage potentially incorporated on these densities parameters. Specifically, the Bovespa Index distribution is investigated, with risk neutral parameters estimated based on options traded in the Equities Segment and the Derivatives Segment at the BM&FBovespa Exchange. Results seem to indicate significant statistical differences at some periods of time. To what extent this evidence is actually the expression of a perennial arbitrage between the markets still is an open question.
8

Testes bayesianos para homogeneidade marginal em tabelas de contingência / Bayesian tests for marginal homogeneity in contingency tables

Carvalho, Helton Graziadei de 06 August 2015 (has links)
O problema de testar hipóteses sobre proporções marginais de uma tabela de contingência assume papel fundamental, por exemplo, na investigação da mudança de opinião e comportamento. Apesar disso, a maioria dos textos na literatura abordam procedimentos para populações independentes, como o teste de homogeneidade de proporções. Existem alguns trabalhos que exploram testes de hipóteses em caso de respostas dependentes como, por exemplo, o teste de McNemar para tabelas 2 x 2. A extensão desse teste para tabelas k x k, denominado teste de homogeneidade marginal, usualmente requer, sob a abordagem clássica, a utilização de aproximações assintóticas. Contudo, quando o tamanho amostral é pequeno ou os dados esparsos, tais métodos podem eventualmente produzir resultados imprecisos. Neste trabalho, revisamos medidas de evidência clássicas e bayesianas comumente empregadas para comparar duas proporções marginais. Além disso, desenvolvemos o Full Bayesian Significance Test (FBST) para testar a homogeneidade marginal em tabelas de contingência bidimensionais e multidimensionais. O FBST é baseado em uma medida de evidência, denominada e-valor, que não depende de resultados assintóticos, não viola o princípio da verossimilhança e respeita a várias propriedades lógicas esperadas para testes de hipóteses. Consequentemente, a abordagem ao problema de teste de homogeneidade marginal pelo FBST soluciona diversas limitações geralmente enfrentadas por outros procedimentos. / Tests of hypotheses for marginal proportions in contingency tables play a fundamental role, for instance, in the investigation of behaviour (or opinion) change. However, most texts in the literature are concerned with tests that assume independent populations (e.g: homogeneity tests). There are some works that explore hypotheses tests for dependent proportions such as the McNemar Test for 2 x 2 contingency tables. The generalization of McNemar test for k x k contingency tables, called marginal homogeneity test, usually requires asymptotic approximations. Nevertheless, for small sample sizes or sparse tables, such methods may occasionally produce imprecise results. In this work, we review some classical and Bayesian measures of evidence commonly applied to compare two marginal proportions. We propose the Full Bayesian Significance Test (FBST) to investigate marginal homogeneity in two-way and multidimensional contingency tables. The FBST is based on a measure of evidence, called e-value, which does not depend on asymptotic results, does not violate the likelihood principle and satisfies logical properties that are expected from hypothesis testing. Consequently, the FBST approach to test marginal homogeneity overcomes several limitations usually met by other procedures.
9

Seleção de modelos econométricos não aninhados: J-Teste e FBST / Non nested econometric model selection: J-Test and FBST

Cerezetti, Fernando Valvano 26 October 2007 (has links)
A comparação e seleção de modelos estatísticos desempenham um papel fundamental dentro da análise econométrica. No que se trata especificamente da avaliação de modelos não aninhados, o procedimento de teste denominado de J-Teste aparece como uma ferramenta de uso freqüente nessa literatura. De acordo com apontamentos, entre os anos de 1984 e 2004 o J-Teste foi citado em 497 artigos pertinentes. Diferentemente do J-Teste, as abordagens Bayesianas possuem um potencial de aplicabilidade ainda pouco explorado na literatura, dado que são metodologicamente coerentes com os procedimentos inferenciais da econometria. Nesse sentido, o objetivo do presente trabalho é o de avaliar a aplicabilidade do procedimento de teste Bayesiano FBST para a comparação de modelos econométricos não aninhados. Implementando-se o FBST para os mesmos dados de estudos estatísticos relevantes na Teoria Econômica, tais como Bremmer (2003) (Curva de Phillips) e Caporale e Grier (2000) (determinação da taxa de juros real), constata-se que os resultados obtidos apontam para conclusões semelhantes daquelas delineadas com a utilização do J-Teste. Além disso, ao se utilizar a noção de função poder para avaliar ambos os procedimentos de teste, observa-se que sob certas condições as chances de erro expressas pelo Erro Tipo I e Erro Tipo II se tornam relativamente próximas. / The comparison and selection of statistical models play an important role in econometric analysis. Dealing with evaluation of non nested models, the test procedure called J-Test is a frequently used tool in the literature. Accordingly to statistics, between the years 1894 and 2004 the J-Test was cited on 497 pertinent articles. Differently from J-Test, the Bayesian theories have an unexplored applicability potential in the literature, once they are methodologically coherent with the standard procedures of inference in econometrics. In this sense, the objective of this essay is to evaluate the applicability of the Bayesian procedure FBST to comparison of non nested econometric models. Implementing the FBST to the same data of some relevant statistical studies in Economic Theory, like Bremmer (2003) (Phillips Curve) and Caporale and Grier (2000) (real interest rate determination), it can be seen that the results obtained point to the same conclusions as that attained with J-Test utilization. Besides that, when implementing the power function to evaluate both test procedures, it can be observed that under some conditions the error chances expressed by Error Type I and Error Type II become relatively close.
10

Seleção de modelos econométricos não aninhados: J-Teste e FBST / Non nested econometric model selection: J-Test and FBST

Fernando Valvano Cerezetti 26 October 2007 (has links)
A comparação e seleção de modelos estatísticos desempenham um papel fundamental dentro da análise econométrica. No que se trata especificamente da avaliação de modelos não aninhados, o procedimento de teste denominado de J-Teste aparece como uma ferramenta de uso freqüente nessa literatura. De acordo com apontamentos, entre os anos de 1984 e 2004 o J-Teste foi citado em 497 artigos pertinentes. Diferentemente do J-Teste, as abordagens Bayesianas possuem um potencial de aplicabilidade ainda pouco explorado na literatura, dado que são metodologicamente coerentes com os procedimentos inferenciais da econometria. Nesse sentido, o objetivo do presente trabalho é o de avaliar a aplicabilidade do procedimento de teste Bayesiano FBST para a comparação de modelos econométricos não aninhados. Implementando-se o FBST para os mesmos dados de estudos estatísticos relevantes na Teoria Econômica, tais como Bremmer (2003) (Curva de Phillips) e Caporale e Grier (2000) (determinação da taxa de juros real), constata-se que os resultados obtidos apontam para conclusões semelhantes daquelas delineadas com a utilização do J-Teste. Além disso, ao se utilizar a noção de função poder para avaliar ambos os procedimentos de teste, observa-se que sob certas condições as chances de erro expressas pelo Erro Tipo I e Erro Tipo II se tornam relativamente próximas. / The comparison and selection of statistical models play an important role in econometric analysis. Dealing with evaluation of non nested models, the test procedure called J-Test is a frequently used tool in the literature. Accordingly to statistics, between the years 1894 and 2004 the J-Test was cited on 497 pertinent articles. Differently from J-Test, the Bayesian theories have an unexplored applicability potential in the literature, once they are methodologically coherent with the standard procedures of inference in econometrics. In this sense, the objective of this essay is to evaluate the applicability of the Bayesian procedure FBST to comparison of non nested econometric models. Implementing the FBST to the same data of some relevant statistical studies in Economic Theory, like Bremmer (2003) (Phillips Curve) and Caporale and Grier (2000) (real interest rate determination), it can be seen that the results obtained point to the same conclusions as that attained with J-Test utilization. Besides that, when implementing the power function to evaluate both test procedures, it can be observed that under some conditions the error chances expressed by Error Type I and Error Type II become relatively close.

Page generated in 0.0288 seconds