• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 6
  • 2
  • Tagged with
  • 117
  • 117
  • 90
  • 78
  • 25
  • 23
  • 19
  • 18
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desempenho das firmas versus percepção de obstáculo: evidências para Brasil, Chile e Peru

Melo, Jefferson Ricardo do Amaral January 2014 (has links)
MELO, Jefferson Ricardo do Amaral. Desempenho das firmas versus percepção de obstáculos: evidências para Brasil, Chile e Peru. 2014. 54f. Dissertação (mestrado profissional) - Universidade Federal do Ceará, Programa de Pós Graduação em Economia, CAEN, Fortaleza-Ce, 2014. / Submitted by Mônica Correia Aquino (monicacorreiaaquino@gmail.com) on 2016-02-25T20:18:14Z No. of bitstreams: 1 2014_dissert_jramelo.pdf: 1258442 bytes, checksum: ed79827383bfd3a81d94e4fc4bd9acc8 (MD5) / Approved for entry into archive by Mônica Correia Aquino(monicacorreiaaquino@gmail.com) on 2016-02-25T20:18:29Z (GMT) No. of bitstreams: 1 2014_dissert_jramelo.pdf: 1258442 bytes, checksum: ed79827383bfd3a81d94e4fc4bd9acc8 (MD5) / Made available in DSpace on 2016-02-25T20:18:29Z (GMT). No. of bitstreams: 1 2014_dissert_jramelo.pdf: 1258442 bytes, checksum: ed79827383bfd3a81d94e4fc4bd9acc8 (MD5) Previous issue date: 2014 / Firms' performance may be affected by a number of obstacles, they are intrinsic to the Firm as size, sector, and organizational structure of the firm, or determined by the social and economic context of the country in which it is located. The perception that the entrepreneur has the contextual difficulties can direct investments in any direction, making the same companies take different decisions. This dissertation investigates how perceptions of different types contextual obstacles can affect the performance of firms in different countries of South America: Brazil, Chile and Peru. For this was used as performance indicators fixed asset investment, resource capacity utilization, sales growth and hiring workers. Contextual obstacles were considered the institutional / legal nature such as taxes, licenses and regulation of labor; Social: corruption, crime and competition from the informal sector; economic: unskilled labor and access to funding and infrastructure: access to electricity and transportation. The survey data were extracted from the World Bank website, research enterprise surveys. To make estimates of the linear and logistic regression models were used as the dependent variable. The main results showed that economic and social obstacles are common to the three countries studied. It should be noted that in addition to common obstacles to the three countries, to Chile and Peru, obstacles Institutional / Legal also seem to influence the performance of companies in those countries. / Desempenho das firmas podem ser afetados por um conjunto de obstáculos, sendo eles intrínsicos à própria firma como tamanho, setor, e estrutura organizacional da firma, ou determinados pelo contexto econômico e social do país em que a mesma se encontra. A percepção que o empresário possui das dificuldades contextuais podem direcionar os investimentos em qualquer sentido, fazendo com que empresas iguais tomem decisões diferentes. Esta dissertação investiga como percepções de diferentes tipos obstáculos contextuais podem afetar a performance das firmas em diferentes países da America do Sul: Brasil, Chile e Peru. Para isso utilizou-se como indicadores de performance os investimentos em ativos fixos, capacidade de utilização de recursos, crescimento de vendas e contratações de trabalhadores. Os obstáculos contextuais considerados foram os de cunho institucionais/legais tais como: carga tributária, licenças e regulamento do trabalho; sociais: corrupção, crime e competição com setor informal; econômicos: mão-de-obra não qualificada e acesso a financiamento e de infraestrutura: acesso a eletricidade e transporte. Os dados da pesquisa foram extraídos do site do Banco Mundial, pesquisa enterprise surveys. Para fazer as estimações foram utilizados os modelos de regressão linear e logistica conforme a variável dependente. Os principais resultados mostraram que obstáculos econômicos e sociais são comuns aos três países estudados. Cabe destacar que além de obstáculos comuns aos três países, para o Chile e Peru, obstáculos Institucionais/legais parecem também influenciar o desempenho das empresas daqueles países. Palavras-
2

Modelos não lineares parciais generalizados superdispersados

ARAÚJO, Yuri Alves de 20 February 2017 (has links)
Submitted by Alice Araujo (alice.caraujo@ufpe.br) on 2018-05-07T22:34:45Z No. of bitstreams: 1 DISSERTAÇÃO Yuri Alves de Araújo.pdf: 758815 bytes, checksum: d5dcd9d661e8145ae2ace6d8e4d10444 (MD5) / Made available in DSpace on 2018-05-07T22:34:45Z (GMT). No. of bitstreams: 1 DISSERTAÇÃO Yuri Alves de Araújo.pdf: 758815 bytes, checksum: d5dcd9d661e8145ae2ace6d8e4d10444 (MD5) Previous issue date: 2017-02-20 / CAPES / Os modelos de regressão são amplamente utilizados quando desejamos avaliar o comportamento de uma ou mais características de interesse (variáveis respostas), em função de outras características observadas (variáveis explicativas). No entanto, os modelos usuais em geral são bastante restritivos e, naturalmente, ocorre uma busca por modelos cada vez mais flexíveis. Neste contexto, Dey et al. (1997) propõem uma classe de modelos lineares generalizados superdispersados, os quais tem a capacidade de controlar a vari-abilidade modelando também sua dispersão de forma independente de sua média. Por outro lado, classes de modelos semiparamétricos estão cada vez mais relevantes na literatura, visto que estes apresentam grande flexibilidade na relação entre a variável resposta e suas correspondentes variáveis explicativas. Nesta dissertação estendemos a classe de modelos superdispersados propostos por Dey et al. (1997) para o âmbito semiparamétrico, ao considerar que a média e a dispersão da variável resposta dependem de componentes paramétricos não lineares e de componentes não paramétricos. Propomos um processo de estimação conjunto dos parâmetros do modelo, e adicionalmente, um critério para a seleção dos parâmetros associados à suavidade das funções não paramétricas. Desenvolvemos técnicas de diagnóstico baseadas em medidas de alavancagem, análise de resíduos e influência local. Na análise de influência local, foram considerados três esquemas de perturbação: perturbação na variável resposta, perturbação nos preditores e ponderação de casos. Por fim, foram realizadas implementações computacionais das técnicas de diagnóstico com o auxilio do software R, as quais são relacionadas com propostas de aplicações práticas envolvendo análise de dados reais. / Regression models are widely used when we want to evaluate the behavior of one or more characteristics of interest (response variables), according to other observed charac-teristics (explanatory variables). However, usual models are so restrictive and, naturally, a search for models is becoming increasingly flexible. In this context, Dey et al. (1997) proposed a class of overdispersed generalized linear models, which has the capacity to controls variability the also modeling a dispersion independently of the mean. On the other hand, are increasingly relevant in literature, since they have great flexibility in the rela-tionship between the response variable and their corresponding explanatory variables. In this work, we extend to the class of models proposed by Dey et al. (1997) for semiparame-tric context, considering that the mean and the dispersion for response variable depend on nonlinear parametric components and nonparametric components. We propose the joint parameter estimation process, and in addition, a selection criteria for the smooth param-eters associated with nonparametric functions. We develop diagnostic techniques based on leverage measures, residuals analisys and local influence under different perturbation schemes. Finally, applications to real data are presented.
3

Modelos de regressão sob mistura de escala normal: um enfoque não paramétrico para a variável de mistura

MATOS JÚNIOR, Francisco Jucelino 23 February 2017 (has links)
Submitted by Alice Araujo (alice.caraujo@ufpe.br) on 2018-05-07T23:10:11Z No. of bitstreams: 1 DISSERTAÇÃO Francisco Jucelino Matos Júnior.pdf: 980212 bytes, checksum: 3dadbbaf0fdfb58f20bf3335dee9a4a1 (MD5) / Made available in DSpace on 2018-05-07T23:10:11Z (GMT). No. of bitstreams: 1 DISSERTAÇÃO Francisco Jucelino Matos Júnior.pdf: 980212 bytes, checksum: 3dadbbaf0fdfb58f20bf3335dee9a4a1 (MD5) Previous issue date: 2017-02-23 / CNPQ / Martin e Han (2016) propuseram o modelo de regressão linear (MRL-MEN), utilizando o algoritmo Predicte Recursive (PR) para estimar a distribuição da variável aleatória de mistura, considerando o parâmetro de escala conhecido e igual a um. Nesta dissertação estendemos o trabalho desenvolvido por Martin e Han (2016) propondo o modelo de regressão não linear (MRL-MEN) cujo erro tem distribuição de mistura de escala normal (MEN) não especificando uma distribuição para a variável de mistura. A principal motivação em trabalhar com a subclasse de distribuições MEN, é que esta permite trabalhar com distribuições com caudas mais pesadas, uma vez que os estimadores de máxima verossimilhança dos parâmetros do modelo são menos sensíveis a observações atípicas. Especificamente, desenvolvemos um processo para estimar os parâmetros no MRNL-MEN, considerando o parâmetro de escala conhecido e igual a um. Além disso, baseado em duas abordagens apresentadas em Efron (1979) e Louis (1982), estimamos a matriz de variâncias e covariâncias para os estimadores do modelo abordado. Por meio de estudos de simulação, avaliamos empiricamente as propriedades assintóticas dos estimadores em vários cenários, como por exemplo, as estimativas dos parâmetros na presença de observações atípicas e analisamos um conjunto de dados reais por meio da metodologia desenvolvida. / Martin and Han (2016) proposed the linear regression model (LRM-SMN), using the Predictive Recursive (PR) algorithm to estimate the distribution of the mixing random variable, considering a scale parameter known and equal to one. In this present work, we extend the work developed by Martin and Han (2016) proposing the nonlinear regression model (NLRM-SMN) with a distribution error of a normal scale (SMN) not specifying a distribution for a mixture variable. The main motivation for working with the subclass of SMN, is that it allows practitioners to work with heavy tailed distributions, where maximum likelihood estimators of the model parameters are less sensitive to atypical observations. Specficaly, we developed a new estimation process to estimate the parameters in NLRM-SMN, considering known and equal to one. In addition, based on two approaches given in Efron (1979) and Louis (1982) we estimated the covariance matrix of the estimators of the model addressed. Through simulation studies, we evaluated empir-ically the asymptotic properties of the estimators in different scenarios, for example, the parameters estimates in the presence of outliers and analyzed a real data set through the developed methodology.
4

Método de orientação à modelagem de dados mensurados em proporção

Sant'Anna, Ângelo Márcio Oliveira January 2006 (has links)
A implementação de técnicas estatísticas, como modelos de regressão, permite conhecer os efeitos dos fatores sobre a característica de qualidade de um produto, contribuindo na melhoria da qualidade de produtos e processos. O objetivo desta dissertação consiste em elaborar um método que oriente à modelagem de dados mensurados em proporção, levando em consideração a classificação das variáveis dependentes e independentes, com enfoque no Modelo de Regressão Beta e no Modelo de Quaseverossimilhança. O método é ilustrado com um estudo em uma empresa curtidora da região do Vale do Rio dos Sinos no Rio Grande do Sul. A modelagem realizada neste estudo referiuse a proporção de produtos refugados no processo de produção por erro de classificação. Os Modelos de Regressão Beta e de Quase-verossimilhança apresentaram bom ajuste e mostraram-se adequados na modelagem da proporção de produtos por erros de classificação. Esses modelos podem ser estendidos a todos os processos industriais que envolvam a produção de produtos não conformes às especificações de fabricação (defeituosos). O método elaborado apresentou facilidade de entendimento e clareza dos passos para a escolha dos modelos de regressão usados na modelagem de dados mensurados em proporção.
5

Método de orientação à modelagem de dados mensurados em proporção

Sant'Anna, Ângelo Márcio Oliveira January 2006 (has links)
A implementação de técnicas estatísticas, como modelos de regressão, permite conhecer os efeitos dos fatores sobre a característica de qualidade de um produto, contribuindo na melhoria da qualidade de produtos e processos. O objetivo desta dissertação consiste em elaborar um método que oriente à modelagem de dados mensurados em proporção, levando em consideração a classificação das variáveis dependentes e independentes, com enfoque no Modelo de Regressão Beta e no Modelo de Quaseverossimilhança. O método é ilustrado com um estudo em uma empresa curtidora da região do Vale do Rio dos Sinos no Rio Grande do Sul. A modelagem realizada neste estudo referiuse a proporção de produtos refugados no processo de produção por erro de classificação. Os Modelos de Regressão Beta e de Quase-verossimilhança apresentaram bom ajuste e mostraram-se adequados na modelagem da proporção de produtos por erros de classificação. Esses modelos podem ser estendidos a todos os processos industriais que envolvam a produção de produtos não conformes às especificações de fabricação (defeituosos). O método elaborado apresentou facilidade de entendimento e clareza dos passos para a escolha dos modelos de regressão usados na modelagem de dados mensurados em proporção.
6

Método de orientação à modelagem de dados mensurados em proporção

Sant'Anna, Ângelo Márcio Oliveira January 2006 (has links)
A implementação de técnicas estatísticas, como modelos de regressão, permite conhecer os efeitos dos fatores sobre a característica de qualidade de um produto, contribuindo na melhoria da qualidade de produtos e processos. O objetivo desta dissertação consiste em elaborar um método que oriente à modelagem de dados mensurados em proporção, levando em consideração a classificação das variáveis dependentes e independentes, com enfoque no Modelo de Regressão Beta e no Modelo de Quaseverossimilhança. O método é ilustrado com um estudo em uma empresa curtidora da região do Vale do Rio dos Sinos no Rio Grande do Sul. A modelagem realizada neste estudo referiuse a proporção de produtos refugados no processo de produção por erro de classificação. Os Modelos de Regressão Beta e de Quase-verossimilhança apresentaram bom ajuste e mostraram-se adequados na modelagem da proporção de produtos por erros de classificação. Esses modelos podem ser estendidos a todos os processos industriais que envolvam a produção de produtos não conformes às especificações de fabricação (defeituosos). O método elaborado apresentou facilidade de entendimento e clareza dos passos para a escolha dos modelos de regressão usados na modelagem de dados mensurados em proporção.
7

Modelos de regressão para dados simbólicos de natureza intervalar

de Andrade Lima Neto, Eufrasio 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T15:49:15Z (GMT). No. of bitstreams: 1 license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O processo de descoberta de conhecimento tem por objetivo a extração de informações úteis (conhecimento) em bases de dados. As ferramentas utilizadas para execução do processo de extração de conhecimento são genéricas e derivadas de diferentes áreas de conhecimento tais como da estatística, aprendizagem de máquina e banco de dados. Dentre as técnicas estatísticas, os modelos de regressão procuram classificar ou prever o comportamento de uma variável dependente (resposta) a partir das informações provenientes de um conjunto de variáveis independentes (explicativas). A análise de dados simbólicos (SDA) (Bock & Diday 2000) tem sido introduzida como uma novo domínio relacionado à análise multivariada, reconhecimento de padrões e inteligência artificial com o objetivo de estender os métodos estatísticos e de análise exploratória de dados para dados simbólicos. O objetivo deste trabalho é propor métodos de regressão linear e não-linear para dados simbólicos que apresentem uma performance de predição superior ao método proposto por Billard & Diday (2000), no caso de variáveis simbólicas tipo intervalo
8

Ensaios de modelos de regressão linear e não-linear para dados simbólicos de tipo intervalo

REYES, Dailys Maite Aliaga 14 February 2017 (has links)
Submitted by Pedro Barros (pedro.silvabarros@ufpe.br) on 2018-06-25T20:27:45Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Dailys Maite Aliaga Reyes.pdf: 1031688 bytes, checksum: d2b38d73f1c20d04530a539f28c3bff9 (MD5) / Made available in DSpace on 2018-06-25T20:27:45Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Dailys Maite Aliaga Reyes.pdf: 1031688 bytes, checksum: d2b38d73f1c20d04530a539f28c3bff9 (MD5) Previous issue date: 2017-02-14 / FACEPE / A presente dissertação foi desenvolvida no marco da análise de dados simbólicos de tipo intervalo, especificamente, em modelos de regressão. Os dados simbólicos são extensões de tipos de dados clássicos. Em conjuntos de dados convencionais, os objetos são individualizados, enquanto em dados simbólicos estes são unificados por relacionamentos. Primeiramente, foi realizada uma revisão sobre dados desta natureza e das principais metodologias utilizadas para sua análise. Um novo modelo de precificação de ativos de capital (CAPM pelas siglas em inglês) foi proposto e testado para dados intervalares. A abordagem levou em conta a variação nos intervalos de preços diários em ativos de mercado, observando os preços máximos e mínimos ao invés dos preços de abertura ou fechamento que têm sido mais populares em aplicações econométricas com modelos de CAPM. Para os cálculos envolvendo intervalos de preços e retornos de ativos, as operações básicas da aritmética intervalar foram utilizadas. O modelo proposto (iCAPM) é uma das mais recentes aplicações CAPM intervalares, em que a estimativa do parâmetro β é um intervalo. Nesta ocasião, foi proposta uma nova interpretação para dito parâmetro em conformidade com a interpretação tradicional para o risco sistemático de ativos na área das finanças. Foram apresenta dos dois exemplos ilustrativos com os intervalos de preços diários da Microsoft e de Amazon, usando os retornos do mercado derivados do índice S&P500 do01denovembrode2013ao15dejaneirode2015. Em conformidade com os testes estatísticos aqui realizados, os resultados da aplicação do modelo CAPM intervalar (iCAPM) proposto são consistentes estatísticamente, comum a explicação confiável referente aos retornos dos ativos em questão e aos retornos do mercado. Conjuntamente, foi introduzido um modelo de regressão não-linear simétrica para dados simbólicos de tipo intervalo (SNLRM-IVD), o qual ajusta um único modelo de regressão não-linear aos pontos médios (centros) e amplitudes (ranges) dos intervalos considerando a distribuição de t-Student. O desempenho do modelo foi validado através do critério estatístico da magnitude média doerro relativo, desenvolvendo experimentos no âmbito de simulações de Monte Carlo em relação a vários cenários simbólicos com outliers. Além do mais, o modelo proposto foi ajustado a um conjunto real de dados intervalares. A principal característica deste modelo é que proporciona estimadores não sensíveis à presença de outliers. / The present dissertation was developed within the framework of the symbolic data analysis of interval-valued type, and it is specially related to regression models. Symbolic data are extensions of classic data types. In conventional data sets, objects are individualized, while in symbolic data they are unified by relationships. At first, a deep review about the nature of this kind of data and the main methodologies used for its analysis were performed. A new capital asset pricing model (CAPM) has been proposed and tested for interval symbolic data. The approach considered the daily variation of the price ranges in market assets according to the maximum and minimum prices rather than the opening or closing prices, which have been most popular in econometric applications with CAPM models. For calculations involving price ranges and asset returns, the basic operations concerning the interval arithmetic were used. The proposed model (iCAPM) is one of the most recent interval CAPM applications, in which the estimate of theβ-parameter is, in fact, an interval. On this occasion, a new interpretation was proposed for this parameter in accordance with the traditional interpretation for the systematic risk of the assets in the market. Two figurative examples involving the daily price ranges of Microsoft and Amazon have been presented, using the market returns from the S&P500 index in the period from November 1, 2013 to January 15, 2015. In accordance with the statistical tests performed here, the results of the application of the proposed model (iCAPM) are statistically consistent with a reliable explanation of the assets returns and the market returns in question. Secondly, a non-linear regression model for interval-valued data was introduced (SNLRM-IVD), which sets a single regression model to the midpoints (centers) and ranges of the intervals at once, considering thet-Student distribution. The performance of the model was validated through the statistical criterion of the average magnitude of the relative error, undergoing experiments in the scope of Monte Carlo simulations in relation to several symbolic scenarios with outliers. Finally, the proposed model was fitted to a real set of interval data. The main feature of this SNLRM-IVD is that it provides estimators that are not sensitive to the presence of outliers.
9

Previsão de comportamentos de ofertas de venda de energia em mercados de electricidade

Simas, Henrique Emanuel Ferraz Cunha January 2008 (has links)
Estágio realizado na EDP e orientado pelo Eng.º Vírgilio Mendes e Eng.ª Ana Cristina Nunes / Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Energia. Faculdade de Engenharia. Universidade do Porto. 2008
10

Utilização de árvores de regressão lineares para avaliação de segurança dinâmica de sistemas interligados com elevada integração de produção éolica

Barbosa, João Manuel Dantas Monteiro da Rocha January 2010 (has links)
Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Energia). Faculdade de Engenharia. Universidade do Porto. 2010

Page generated in 0.1046 seconds