Return to search

Modelling Cyber Security of Networks as a Reinforcement Learning Problem using Graphs : An Application of Reinforcement Learning to the Meta Attack Language / Cybersäkerhet för datornätverk representerat som ett förstärkningsinlärningsproblem med grafer : Förstärkningsinlärning applicerat på Meta Attack Language

ICT systems are part of the vital infrastructure in today’s society. These systems are under constant threat and efforts are continually being put forth by cyber security experts to protect them. By applying modern AI methods, can these efforts both be improved and alleviated of the cost of expert work. This thesis examines whether a reinforcement learning (RL) algorithm can be applied to a cyber security modelling of ICT systems. The research question answered is that of how well an RL algorithm can optimise the resource cost of successful cyber attacks, as represented by a cyber security model? The modelling, called Meta Attack Language (MAL), is a meta language for attack graphs that details the individual steps to be taken in a cyber attack. In the previous work of Manuel Rickli’s thesis, a method of automatically generating attack graphs according to MAL aimed at modelling industry-level computer networks, was presented. The method was used to generate different distributions of attack graphs that were used to train deep Q-learning (DQN) agents. The agents’ results were then compared with a random agent and a greedy method based on the A∗ search algorithm. The results show that attack step selection can be achieved with a higher performance than the uninformed choice of the random agent, by DQN. However, DQN was unable to achieve higher performance than the A∗ method. This may be due to the simplicity of the attack graph generation or the fact that the A∗ method has access to the complete attack graph, amongst other factors. The thesis also raises questions about general representation of MAL attack graphs as RL problems and how to apply RL algorithms to the RL problem. The source code of this thesis is available at: https://github.com/KTH-SSAS/sandor-berglund-thesis. / IT-system är i dagens samhälle en väsentlig del av infrastrukturen som är under konstant hot av olika personer och organisationer. IT-säkerhetsexperter lägger ner beständigt arbete på att hålla dessa system säkra och för att avvärja illvilliga auktioner mot IT-system. Moderna AI-metoder kan användas för att förbättra och lätta på kostnaden av expertarbetet inom området. Detta examensarbete avser att undersöka hur en förstärkningsinlärningsalgoritm kan appliceras på en cybersäkerhetsmodell. Det görs genom att besvara frågeställningen: Hur väl kan en förstärkningsinlärningsalgoritm optimera en cyberattack representerat av en cybersäkerhetsmodell? Meta Attack Language (MAL) är ett metaspråk för attackgrafer som beskriver varje steg i en cyberattack. I detta examensarbete användes Manuell Ricklis implementation av MAL samt attack grafs generation för att definiera ett förstärkningsinlärningsproblem. Förstärkningsinlärningsalgoritmen deep Q-learning (DQN) användes för att träna ett attention baserat neuronnät på olika fördelningar av attackgrafer och jämfördes med en slumpmässig agent och en girig metod baserad på sökalgoritmen A∗ . Resultaten visar att DQN kunde producera en agent som presterar bättre än den oinformerade slumpmässiga agenten. Agenten presterade däremot inte bättre än den giriga A∗ metoden, vilket kan bero på att A∗ har tillgång till den fulla attack grafen, bland andra bidragande faktorer. Arbetet som läggs fram här väcker frågor om hur MAL-attackgrafer representeras som förstärkningsinlärningsproblem och hur förstärkningsinlärningsalgoritmer appliceras där av. Källkoden till det här examensarbetet finns på: https://github.com/KTHSSAS/sandor-berglund-thesis.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-320965
Date January 2022
CreatorsBerglund, Sandor
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:545

Page generated in 0.0031 seconds