Return to search

Improving the Robustness of Deep Neural Networks against Adversarial Examples via Adversarial Training with Maximal Coding Rate Reduction / Förbättra Robustheten hos Djupa Neurala Nätverk mot Exempel på en Motpart genom Utbildning för motståndare med Maximal Minskning av Kodningshastigheten

Deep learning is one of the hottest scientific topics at the moment. Deep convolutional networks can solve various complex tasks in the field of image processing. However, adversarial attacks have been shown to have the ability of fooling deep learning models. An adversarial attack is accomplished by applying specially designed perturbations on the input image of a deep learning model. The noises are almost visually indistinguishable to human eyes, but can fool classifiers into making wrong predictions. In this thesis, adversarial attacks and methods to improve deep learning ’models robustness against adversarial samples were studied. Five different adversarial attack algorithm were implemented. These attack algorithms included white-box attacks and black-box attacks, targeted attacks and non-targeted attacks, and image-specific attacks and universal attacks. The adversarial attacks generated adversarial examples that resulted in significant drop in classification accuracy. Adversarial training is one commonly used strategy to improve the robustness of deep learning models against adversarial examples. It is shown that adversarial training can provide an additional regularization benefit beyond that provided by using dropout. Adversarial training is performed by incorporating adversarial examples into the training process. Traditionally, during this process, cross-entropy loss is used as the loss function. In order to improve the robustness of deep learning models against adversarial examples, in this thesis we propose two new methods of adversarial training by applying the principle of Maximal Coding Rate Reduction. The Maximal Coding Rate Reduction loss function maximizes the coding rate difference between the whole data set and the sum of each individual class. We evaluated the performance of different adversarial training methods by comparing the clean accuracy, adversarial accuracy and local Lipschitzness. It was shown that adversarial training with Maximal Coding Rate Reduction loss function would yield a more robust network than the traditional adversarial training method. / Djupinlärning är ett av de hetaste vetenskapliga ämnena just nu. Djupa konvolutionella nätverk kan lösa olika komplexa uppgifter inom bildbehandling. Det har dock visat sig att motståndarattacker har förmågan att lura djupa inlärningsmodeller. En motståndarattack genomförs genom att man tillämpar särskilt utformade störningar på den ingående bilden för en djup inlärningsmodell. Störningarna är nästan visuellt omöjliga att särskilja för mänskliga ögon, men kan lura klassificerare att göra felaktiga förutsägelser. I den här avhandlingen studerades motståndarattacker och metoder för att förbättra djupinlärningsmodellers robusthet mot motståndarexempel. Fem olika algoritmer för motståndarattack implementerades. Dessa angreppsalgoritmer omfattade white-box-attacker och black-box-attacker, riktade attacker och icke-målinriktade attacker samt bildspecifika attacker och universella attacker. De negativa attackerna genererade motståndarexempel som ledde till en betydande minskning av klassificeringsnoggrannheten. Motståndsträning är en vanligt förekommande strategi för att förbättra djupinlärningsmodellernas robusthet mot motståndarexempel. Det visas att motståndsträning kan ge en ytterligare regulariseringsfördel utöver den som ges genom att använda dropout. Motståndsträning utförs genom att man införlivar motståndarexempel i träningsprocessen. Traditionellt används under denna process cross-entropy loss som förlustfunktion. För att förbättra djupinlärningsmodellernas robusthet mot motståndarexempel föreslår vi i den här avhandlingen två nya metoder för motståndsträning genom att tillämpa principen om maximal minskning av kodningshastigheten. Förlustfunktionen Maximal Coding Rate Reduction maximerar skillnaden i kodningshastighet mellan hela datamängden och summan av varje enskild klass. Vi utvärderade prestandan hos olika metoder för motståndsträning genom att jämföra ren noggrannhet, motstånds noggrannhet och lokal Lipschitzness. Det visades att motståndsträning med förlustfunktionen Maximal Coding Rate Reduction skulle ge ett mer robust nätverk än den traditionella motståndsträningsmetoden.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-325671
Date January 2022
CreatorsChu, Hsiang-Yu
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS), Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2022:912

Page generated in 0.0028 seconds