• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Transferability of Adversarial Examples on Machine-Learning-Based Malware Classifiers

Hu, Yang 12 May 2022 (has links)
The use of Machine Learning for malware detection is essential to counter the massive growth in malware types compared with the traditional signature-based detection system. However, machine learning models could also be extremely vulnerable and sensible to transferable adversarial example (AE) attacks. The transfer AE attack does not require extra information from the victim model such as gradient information. Researchers explore mainly 2 lines of transfer-based adversarial example attacks: ensemble models and ensemble samples. \\ Although comprehensive innovations and progress have been achieved in transfer AE attacks, few works have investigated how these techniques perform in malware data. Besides, generating adversarial examples on an android APK file is not as easy and convenient as it is on image data since the generated AE of malware should also remain its functionality and executability after perturbation. Therefore, it is urgent to validate whether previous methodologies could still have their effect on malware considering the differences compared to image data. \\ In this thesis, we first have a thorough literature review for the AE attacks on malware data and general transfer AE attacks. Then we design our algorithm for the transfer AE attack. We formulate the optimization problem based on the intuition that the contribution evenness of features towards the final prediction result is highly correlated to the AE transferability. We then solve the optimization problem by gradient descent and evaluate it through extensive experiments. Implementing and experimenting with the state-of-the-art AE algorithms and transferability enhancement techniques, we analyze and summarize the weaknesses and strengths of each method. / Master of Science / Machine learning models have been widely applied to malware detection systems in recent years due to the massive growth in malware types. However, these models are vulnerable to adversarial attacks. Malicious attackers can add some small imperceptible perturbations to the original testing samples and mislead the classification results at a very low cost. Research on adversarial attacks would help us gain a better understanding of the attacker's side and inspire defenses against them. Among all adversarial attacks, the transfer-based adversarial example attack is one of the most devastating attacks since it does not require extra information from the targeted victim model such as gradient information or query from the model. Although plenty of researchers has explored the transfer AE attack lately, few works focus on malware (e.g., Android) data. Compared with image data, perturbing malware is more complicated and challenging since the generated adversarial examples of malware need to remain functionality and executability. To validate how transfer AE attack methods perform on malware, we implement the state-of-the-art (SOTA) works in this thesis and experiment with them on real Android data. Besides, we develop a new transfer-based AE attack method based on the contribution of each feature for generating AE. We then do comprehensive evaluations and draw comparisons between SOTA works and our proposed method.
2

Active learning et visualisation des données d'apprentissage pour les réseaux de neurones profonds / Active learning and input space analysis for deep networks

Ducoffe, Mélanie 12 December 2018 (has links)
Notre travail est présenté en trois parties indépendantes. Tout d'abord, nous proposons trois heuristiques d'apprentissage actif pour les réseaux de neurones profonds : Nous mettons à l'échelle le `query by committee' , qui agrège la décision de sélectionner ou non une donnée par le vote d'un comité. Pour se faire nous formons le comité à l'aide de différents masques de dropout. Un autre travail se base sur la distance des exemples à la marge. Nous proposons d'utiliser les exemples adversaires comme une approximation de la dite distance. Nous démontrons également des bornes de convergence de notre méthode dans le cas de réseaux linéaires. L’usage des exemples adversaires ouvrent des perspectives de transférabilité d’apprentissage actif d’une architecture à une autre. Puis, nous avons formulé une heuristique d'apprentissage actif qui s'adapte tant au CNNs qu'aux RNNs. Notre méthode sélectionne les données qui minimisent l'énergie libre variationnelle. Dans un second temps, nous nous sommes concentrés sur la distance de Wasserstein. Nous projetons les distributions dans un espace où la distance euclidienne mimique la distance de Wasserstein. Pour se faire nous utilisons une architecture siamoise. Également, nous démontrons les propriétés sous-modulaires des prototypes de Wasserstein et comment les appliquer à l'apprentissage actif. Enfin, nous proposons de nouveaux outils de visualisation pour expliquer les prédictions d'un CNN sur du langage naturel. Premièrement, nous détournons une stratégie d'apprentissage actif pour confronter la pertinence des phrases sélectionnées aux techniques de phraséologie les plus récentes. Deuxièmement, nous profitons des algorithmes de déconvolution des CNNs afin de présenter une nouvelle perspective sur l'analyse d'un texte. / Our work is presented in three separate parts which can be read independently. Firstly we propose three active learning heuristics that scale to deep neural networks: We scale query by committee, an ensemble active learning methods. We speed up the computation time by sampling a committee of deep networks by applying dropout on the trained model. Another direction was margin-based active learning. We propose to use an adversarial perturbation to measure the distance to the margin. We also establish theoretical bounds on the convergence of our Adversarial Active Learning strategy for linear classifiers. Some inherent properties of adversarial examples opens up promising opportunity to transfer active learning data from one network to another. We also derive an active learning heuristic that scales to both CNN and RNN by selecting the unlabeled data that minimize the variational free energy. Secondly, we focus our work on how to fasten the computation of Wasserstein distances. We propose to approximate Wasserstein distances using a Siamese architecture. From another point of view, we demonstrate the submodular properties of Wasserstein medoids and how to apply it in active learning. Eventually, we provide new visualization tools for explaining the predictions of CNN on a text. First, we hijack an active learning strategy to confront the relevance of the sentences selected with active learning to state-of-the-art phraseology techniques. These works help to understand the hierarchy of the linguistic knowledge acquired during the training of CNNs on NLP tasks. Secondly, we take advantage of deconvolution networks for image analysis to present a new perspective on text analysis to the linguistic community that we call Text Deconvolution Saliency.
3

Improving the Robustness of Deep Neural Networks against Adversarial Examples via Adversarial Training with Maximal Coding Rate Reduction / Förbättra Robustheten hos Djupa Neurala Nätverk mot Exempel på en Motpart genom Utbildning för motståndare med Maximal Minskning av Kodningshastigheten

Chu, Hsiang-Yu January 2022 (has links)
Deep learning is one of the hottest scientific topics at the moment. Deep convolutional networks can solve various complex tasks in the field of image processing. However, adversarial attacks have been shown to have the ability of fooling deep learning models. An adversarial attack is accomplished by applying specially designed perturbations on the input image of a deep learning model. The noises are almost visually indistinguishable to human eyes, but can fool classifiers into making wrong predictions. In this thesis, adversarial attacks and methods to improve deep learning ’models robustness against adversarial samples were studied. Five different adversarial attack algorithm were implemented. These attack algorithms included white-box attacks and black-box attacks, targeted attacks and non-targeted attacks, and image-specific attacks and universal attacks. The adversarial attacks generated adversarial examples that resulted in significant drop in classification accuracy. Adversarial training is one commonly used strategy to improve the robustness of deep learning models against adversarial examples. It is shown that adversarial training can provide an additional regularization benefit beyond that provided by using dropout. Adversarial training is performed by incorporating adversarial examples into the training process. Traditionally, during this process, cross-entropy loss is used as the loss function. In order to improve the robustness of deep learning models against adversarial examples, in this thesis we propose two new methods of adversarial training by applying the principle of Maximal Coding Rate Reduction. The Maximal Coding Rate Reduction loss function maximizes the coding rate difference between the whole data set and the sum of each individual class. We evaluated the performance of different adversarial training methods by comparing the clean accuracy, adversarial accuracy and local Lipschitzness. It was shown that adversarial training with Maximal Coding Rate Reduction loss function would yield a more robust network than the traditional adversarial training method. / Djupinlärning är ett av de hetaste vetenskapliga ämnena just nu. Djupa konvolutionella nätverk kan lösa olika komplexa uppgifter inom bildbehandling. Det har dock visat sig att motståndarattacker har förmågan att lura djupa inlärningsmodeller. En motståndarattack genomförs genom att man tillämpar särskilt utformade störningar på den ingående bilden för en djup inlärningsmodell. Störningarna är nästan visuellt omöjliga att särskilja för mänskliga ögon, men kan lura klassificerare att göra felaktiga förutsägelser. I den här avhandlingen studerades motståndarattacker och metoder för att förbättra djupinlärningsmodellers robusthet mot motståndarexempel. Fem olika algoritmer för motståndarattack implementerades. Dessa angreppsalgoritmer omfattade white-box-attacker och black-box-attacker, riktade attacker och icke-målinriktade attacker samt bildspecifika attacker och universella attacker. De negativa attackerna genererade motståndarexempel som ledde till en betydande minskning av klassificeringsnoggrannheten. Motståndsträning är en vanligt förekommande strategi för att förbättra djupinlärningsmodellernas robusthet mot motståndarexempel. Det visas att motståndsträning kan ge en ytterligare regulariseringsfördel utöver den som ges genom att använda dropout. Motståndsträning utförs genom att man införlivar motståndarexempel i träningsprocessen. Traditionellt används under denna process cross-entropy loss som förlustfunktion. För att förbättra djupinlärningsmodellernas robusthet mot motståndarexempel föreslår vi i den här avhandlingen två nya metoder för motståndsträning genom att tillämpa principen om maximal minskning av kodningshastigheten. Förlustfunktionen Maximal Coding Rate Reduction maximerar skillnaden i kodningshastighet mellan hela datamängden och summan av varje enskild klass. Vi utvärderade prestandan hos olika metoder för motståndsträning genom att jämföra ren noggrannhet, motstånds noggrannhet och lokal Lipschitzness. Det visades att motståndsträning med förlustfunktionen Maximal Coding Rate Reduction skulle ge ett mer robust nätverk än den traditionella motståndsträningsmetoden.

Page generated in 0.081 seconds