Return to search

Avaliação de testes diagnósticos na ausência de padrão ouro considerando relaxamento da suposição de independência condicional, covariáveis e estratificação da população: uma abordagem Bayesiana

Made available in DSpace on 2016-06-02T20:04:51Z (GMT). No. of bitstreams: 1
4040.pdf: 1510214 bytes, checksum: 7dfe4542c20ffa8a47309738bc22a922 (MD5)
Previous issue date: 2011-12-16 / Financiadora de Estudos e Projetos / The application of a gold standard reference test in all or part of the sample under investigation is often not feasible for the majority of diseases affecting humans, either by a lack of consensus on which testing may be considered a gold standard, the high level of invasion of the gold standard technique, the high cost of financially large-scale application, or by ethical questions, so to know the performance of existing tests is essential for the process of diagnosis of these diseases. In statistical modeling aimed to obtain robust estimates of the prevalence of the disease (x ) and the performance parameters of diagnostic tests (sensitivity (Se) and specificity (Sp)), various strategies have been considered such as the stratification of the population, the relaxation of the assumption of conditional independence, the inclusion of covariates, the verification type (partial or total) and the techniques to replace the gold standard. In this thesis we propose a new structure of stratification of the population considering both the prevalence rates and the parameters of test performance among the different strata (EHW). A Bayesian latent class modeling to estimate these parameters was developed for the general case of K diagnostic tests under investigation, relaxation of the assumption of conditional independence according to the formulations of the fixed effect (FECD) and random (RECD) with dependent order (h _ k) and M covariates. The application of models to two data sets about the performance evaluation of diagnostic tests used in screening for Chagas disease in blood donors showed results consistent with the sensitivity studies. Overall, we observed for the structure of stratification proposal (EHW) superior performance and estimates closer to the nominal values when compared to the structure of stratification when only the prevalence rates are different between the strata (HW), even when we consider data set with rates of Se, Sp and x close among the strata. Generally, the structure of latent class, when we have low or high prevalence of the disease, estimates of sensitivity and specificity rates have higher standard errors. However, in these cases, when there is high concordance of positive or negative results of the tests, the error pattern of these estimates are reduced. Regardless of the structure of stratification (EHW, HW), sample size and the different scenarios used to model the prior information, the model of conditional dependency from the FECD and RECD had, from the information criteria (AIC, BIC and DIC), superior performance to the structure of conditional independence (CI) and to FECD with improved performance and estimates closer to the nominal values. Besides the connection logit, derived from the logistic distribution with symmetrical shape, find in the link GEV, derived from the generalized extreme value distribution which accommodates symmetric and asymmetric shapes, a interesting alternative to construct the conditional dependence structure from the RECD. As an alternative to the problem of identifiability, present in this type of model, the criteria adopted to elicit the informative priors by combining descriptive analysis of data, adjustment models from simpler structures, were able to produce estimates with low standard error and very close to the nominal values. / Na área da saúde a aplicação de teste de referência padrão ouro na totalidade ou parte da amostra sob investigação é, muitas vezes, impraticável devido à inexistência de consenso sobre o teste a ser considerado padrão ouro, ao elevado nível de invasão da técnica, ao alto custo da aplicação em grande escala ou por questões éticas. Contudo, conhecer o desempenho dos testes é fundamental no processo de diagnóstico. Na modelagem estatística voltada à estimação da taxa de prevalência da doença (x ) e dos parâmetros de desempenho de testes diagnósticos (sensibilidade (S) e especificidade (E)), a literatura tem explorado: estratificação da população, relaxamento da suposição de independência condicional, inclusão de covariáveis, tipo de verificação pelo teste padrão ouro e técnicas para substituir o teste padrão ouro inexistente ou inviável de ser aplicado em toda a amostra. Neste trabalho, propomos uma nova estrutura de estratificação da população considerando taxas de prevalências e parâmetros de desempenho diferentes entre os estratos (HWE). Apresentamos uma modelagem bayesiana de classe latente para o caso geral de K testes diagnósticos sob investigação, relaxamento da suposição de independência condicional segundo as formulações de efeito fixo (DCEF) e efeito aleatório (DCEA) com dependência de ordem (h _ K) e inclusão de M covariáveis. A aplicação dos modelos a dois conjuntos de dados sobre avaliação do desempenho de testes diagnósticos utilizados na triagem da doença de Chagas em doadores de sangue apresentou resultados coerentes com os estudos de sensibilidade. Observamos, para a estrutura de estratificação proposta, HWE, desempenho superior e estimativas muito próximas dos valores nominais quando comparados à estrutura de estratificação na qual somente as taxas de prevalências são diferentes entre os estratos (HW), mesmo quando consideramos dados com taxas de S, E e x muito próximas entre os estratos. Geralmente, na estrutura de classe latente, quando temos baixa ou alta prevalência da doença, as estimativas das sensibilidades e especificidades apresentam, respectivamente, erro padrão mais elevado. No entanto, quando há alta concordância de resultados positivos ou negativos, tal erro diminui. Independentemente da estrutura de estratificação (HWE, HW), do tamanho amostral e dos diferentes cenários utilizados para modelar o conhecimento a priori, os modelos de DCEF e de DCEA apresentaram, a partir dos critérios de informação (AIC, BIC e DIC), desempenhos superiores à estrutura de independência condicional (IC), sendo o de DCEF com melhor desempenho e estimativas mais próximas dos valores nominais. Além da ligação logito, derivada da distribuição logística com forma simétrica, encontramos na ligação VEG , derivada da distribuição de valor extremo generalizada a qual acomoda formas simétricas e assimétricas, interessante alternativa para construir a estrutura de DCEA. Como alternativa ao problema de identificabilidade, neste tipo de modelo, os critérios para elicitar as prioris informativas, combinando análise descritiva dos dados com ajuste de modelos de estruturas mais simples, contribuíram para produzir estimativas com baixo erro padrão e muito próximas dos valores nominais.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4486
Date16 December 2011
CreatorsPereira, Gilberto de Araujo
ContributorsLouzada Neto, Francisco
PublisherUniversidade Federal de São Carlos, Programa de Pós-graduação em Estatística, UFSCar, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds