Dans de nombreux problèmes physiques, un modèle incertain peut être traduit par un ensemble d'équations aux dérivées partielles stochastiques. Nous nous intéressons ici à des problèmes présentant de nombreuses sources d'incertitudes localisées en espace. Dans le cadre des approches fonctionnelles pour la propagation d'incertitudes, ces problèmes présentent deux difficultés majeures. La première est que leurs solutions possèdent un caractère multi-échelle, ce qui nécessite des méthodes de réduction de modèle et des stratégies de calcul adaptées. La deuxième difficulté est associée à la représentation de fonctions de nombreux paramètres pour la prise en compte de nombreuses variabilités. Pour résoudre ces difficultés, nous proposons tout d'abord une méthode de décomposition de domaine multi-échelle qui exploite le caractère localisé des aléas. Un algorithme itératif est proposé, qui requiert une résolution alternée de problèmes globaux et de problèmes locaux, ces derniers étant définis sur des patchs contenant les variabilités localisées. Des méthodes d'approximation de tenseurs sont ensuite utilisées pour la gestion de la grande dimension paramétrique. La séparation multi-échelle améliore le conditionnement des problèmes à résoudre et la convergence des méthodes d'approximation de tenseurs qui est liée aux propriétés spectrales des fonctions à décomposer. Enfin, pour la prise en compte de variabilités géométriques localisées, des méthodes spécifiques basées sur les approches de domaines fictifs sont introduites.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00798526 |
Date | 02 October 2012 |
Creators | Safatly, Elias |
Publisher | Université de Nantes, Ecole centrale de nantes - ECN |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds