Return to search

Méthodes de domaine fictif pour des problèmes elliptiques avec conditions aux limites générales en vue de la simulation numérique d'écoulements diphasiques.

Ce travail est dédié à la mise en place de deux méthodes originales de type domaine fictif pour la résolution de problèmes elliptiques (de type convection-diffusion) avec des conditions aux limites générales et éventuellement mixtes : Dirichlet, Robin ou Neumann. <br />L'originalité de ces méthodes consiste à utiliser le maillage du domaine fictif, généralement non adapté à la géométrie du domaine physique, pour définir une frontière immergée approchée sur laquelle seront appliquées les conditions aux limites immergées. Un même schéma numérique générique permet de traiter toutes les conditions aux limites générales. Ainsi, contrairement aux approches classiques de domaine fictif, ces méthodes ne nécessitent ni l'introduction d'un maillage surfacique de la frontière immergée ni la modification locale du schéma numérique. Deux modélisations de la frontière immergée sont étudiées. Dans la première modélisation, appelée interface diffuse, la frontière immergée approchée est l'union des mailles traversées par la frontière originelle. Dans la deuxième modélisation, la frontière immergée est approchée par une interface dite fine s'appuyant sur les faces de cellules du maillage. Des conditions de transmissions algébriques combinant les sauts de la solution et du flux sont introduites sur cette interface fine. Pour ces deux modélisations, le problème fictif à résoudre ainsi que le traitement des conditions aux limites immergées sont détaillés. Un schéma aux éléments finis Q1 est utilisé pour valider numériquement le modèle à interface diffuse alors qu'un nouveau schéma aux volumes finis est développé pour le modèle à interface fine et sauts immergés. Chaque méthode est combinée avec un algorithme de raffinement de maillage multi-niveaux (avec résidu de solution ou du flux) autour de la frontière immergée afin d'améliorer la précision de la solution obtenue. <br />Parallèlement, une analyse théorique de convergence en maillage non adapté au domaine physique a été effectuée pour une méthode d'éléments finis Q1. Cette étude démontre l'ordre de convergence des méthodes de domaine fictif mises en place.<br />Parmi les nombreuses applications industrielles possibles, une simulation sur une maquette d'échangeur de chaleur dans les centrales nucléaires permet d'apprécier la performance des méthodes mises en oeuvre.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00122916
Date26 September 2006
CreatorsRamière, Isabelle
PublisherUniversité de Provence - Aix-Marseille I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds