Return to search

Homéostasie des histones en réponse au dommage à l’ADN et étude d’inhibiteurs de désacétylases d’importance clinique

La chromatine possède une plasticité complexe et essentielle pour répondre à différents mécanismes cellulaires fondamentaux tels la réplication, la transcription et la réparation de l’ADN. Les histones sont les constituants essentiels de la formation des nucléosomes qui assurent le bon fonctionnement cellulaire d’où l’intérêt de cette thèse d’y porter une attention particulière. Un dysfonctionnement de la chromatine est souvent associé à l’émergence du cancer.



Le chapitre II de cette thèse focalise sur la répression transcriptionnelle des gènes d’histones par le complexe HIR (HIstone gene Repressor) en réponse au dommage à l'ADN chez Saccharomyces cerevisiae. Lors de dommage à l’ADN en début de phase S, les kinases du point de contrôle Mec1, Tel1 et Rad53 s’assurent de bloquer les origines tardives de réplication pour limiter le nombre de collisions potentiellement mutagéniques ou cytotoxiques entre les ADN polymérases et les lésions persistantes dans l'ADN. Lorsque la synthèse totale d’ADN est soudainement ralentie par le point de contrôle, l’accumulation d'un excès d'histones nouvellement synthétisées est néfaste pour les cellules car les histones libres se lient de manière non-spécifique aux acides nucléiques. L'un des mécanismes mis en place afin de minimiser la quantité d’histones libres consiste à réprimer la transcription des gènes d'histones lors d'une chute rapide de la synthèse d'ADN, mais les bases moléculaires de ce mécanisme étaient très mal connues. Notre étude sur la répression des gènes d’histones en réponse aux agents génotoxiques nous a permis d’identifier que les kinases du point de contrôle jouent un rôle dans la répression des gènes d’histones. Avant le début de mon projet, il était déjà connu que le complexe HIR est requis pour la répression des gènes d’histones en phase G1, G2/M et lors de dommage à l’ADN en phase S. Par contre, la régulation du complexe HIR en réponse au dommage à l'ADN n'était pas connue. Nous avons démontré par des essais de spectrométrie de


masse (SM) que Rad53 régule le complexe HIR en phosphorylant directement une de ses sous-unités, Hpc2, à de multiples résidus in vivo et in vitro. La phosphorylation d’Hpc2 est essentielle pour le recrutement aux promoteurs de gènes d’histones du complexe RSC (Remodels the Structure of Chromatin) dont la présence sur les promoteurs des gènes d'histones corrèle avec leur répression. De plus, nous avons mis à jour un nouveau mécanisme de régulation du complexe HIR durant la progression normale à travers le cycle cellulaire ainsi qu'en réponse aux agents génotoxiques. En effet, durant le cycle cellulaire normal, la protéine Hpc2 est très instable durant la transition G1/S afin de permettre la transcription des gènes d’histones et la production d'un pool d'histones néo-synthétisées juste avant l'initiation de la réplication de l’ADN. Toutefois, Hpc2 n'est instable que pour une brève période de temps durant la phase S. Ces résultats suggèrent qu'Hpc2 est une protéine clef pour la régulation de l'activité du complexe HIR et la répression des gènes d’histones lors du cycle cellulaire normal ainsi qu'en réponse au dommage à l’ADN.



Dans le but de poursuivre notre étude sur la régulation des histones, le chapitre III de ma thèse concerne l’analyse globale de l’acétylation des histones induite par les inhibiteurs d’histone désacétylases (HDACi) dans les cellules normales et cancéreuses. Les histones désacétylases (HDACs) sont les enzymes qui enlèvent l’acétylation sur les lysines des histones. Dans plusieurs types de cancers, les HDACs contribuent à l’oncogenèse par leur fusion aberrante avec des complexes protéiques oncogéniques. Les perturbations causées mènent souvent à un état silencieux anormal des suppresseurs de tumeurs. Les HDACs sont donc une cible de choix dans le traitement des cancers engendrés par ces protéines de fusion.



Notre étude de l’effet sur l’acétylation des histones de deux inhibiteurs d'HDACs de relevance clinique, le vorinostat (SAHA) et l’entinostat (MS-275), a permis de démontrer une augmentation élevée de l’acétylation globale des histones


H3 et H4, contrairement à H2A et H2B, et ce, autant chez les cellules normales que cancéreuses. Notre quantification en SM de l'acétylation des histones a révélé de façon inattendue que la stœchiométrie d'acétylation sur la lysine 56 de l’histone H3 (H3K56Ac) est de seulement 0,03% et, de manière surprenante, cette stœchiométrie n'augmente pas dans des cellules traitées avec différents HDACi. Plusieurs études de H3K56Ac chez l’humain présentes dans la littérature ont rapporté des résultats irréconciliables. Qui plus est, H3K56Ac était considéré comme un biomarqueur potentiel dans le diagnostic et pronostic de plusieurs types de cancers. C’est pourquoi nous avons porté notre attention sur la spécificité des anticorps utilisés et avons déterminé qu’une grande majorité d’anticorps utilisés dans la littérature reconnaissent d’autres sites d'acétylation de l’histone H3, notamment H3K9Ac dont la stœchiométrie d'acétylation in vivo est beaucoup plus élevée que celle d'H3K56Ac. De plus, le chapitre IV fait suite à notre étude sur l’acétylation des histones et consiste en un rapport spécial de recherche décrivant la fonction de H3K56Ac chez la levure et l’homme et comporte également une évaluation d’un anticorps supposément spécifique d'H3K56Ac en tant qu'outil diagnostic du cancer chez l’humain. / The chromatin is a complex structure and its plasticity is essential to complete different fundamental cellular processes such as DNA replication, transcription and repair. Furthermore, chromatin malfunction is often associated with cancer emergence. The focus of this thesis will be on the function and regulation of histones, as they are essential components of nucleosomes and they ensure proper chromatin formation.

Chapter II of this thesis focuses on the transcriptional repression of histone genes by the HIR (HIstone gene Repressor) complex in response to DNA damage in Saccharomyces cerevisiae. When DNA damage occurs in early S phase, the DNA damage checkpoint kinases Mec1, Tel1 and Rad53 block late origins of replication to limit potentially mutagenic or cytotoxic collisions between DNA polymerases and remaining DNA lesions. When the total DNA synthesis rate drops suddenly in S- phase, following the checkpoint control activation, accumulation of newly synthesized histones becomes detrimental for the cells because free histones bind non-specifically to nucleic acids. One mechanism that contributes to a reduction in free histones at this time is the repression of histone gene transcription; however, the molecular basis of this repression was not known. Our study on histone gene repression in response to genotoxic agents allowed us to identify the checkpoint kinases as major players in the repression of histone genes. Before initiating this project, it was known that the HIR complex is required to repress histone genes in G1 and G2/M phases and during DNA damage. Nonetheless, HIR complex regulation was not well characterized. We demonstrated by mass spectrometry (MS) analyses that Rad53 regulates the HIR complex by directly phosphorylating one of its subunits, Hpc2, at many residues in vivo and in vitro. Hpc2 phosphorylation is essential to recruit the RSC complex (Remodels the Structure of Chromatin) to histone gene promoters where its presence correlates with histone gene repression. Moreover, we uncovered a novel mechanism for the HIR complex regulation during a normal cell cycle progression and in response to genotoxic agents. Indeed, during a


normal cell cycle, the Hpc2 protein is very unstable at the G1/S transition to allow histone gene transcription and production of a pool of newly synthesized histones just before DNA replication initiation. These results suggest that Hpc2 is a key player in the regulation of HIR complex activity and can repress histone gene expression both during a normal cell cycle and in response to DNA damage.

In order to pursue our study on histone regulation, chapter III of this thesis covers histone acetylation induced by histone deacetylase inhibitors (HDACi) in normal and cancer cells. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from lysine residues on histones, condensing the chromatin and effectively repressing local transcription. Several types of cancers are characterized by epigenetic abnormalities and HDACs contribute to oncogenesis by aberrant fusion with oncogenic protein complexes. The disruptions often lead to an abnormal silent state of tumour suppressors. HDACs are then targets of interest in cancer treatment caused by those fusion proteins.

Our study of the effects of two clinically relevant HDAC inhibitors, vorinostat (SAHA) and entinostat (MS-275) on acetylation of histones demonstrated an obvious increase of histones H3 and H4 acetylation, unlike histones H2A and H2B in both normal and cancer cells. Unexpectedly, our MS quantification of histone acetylation revealed that the stoichiometry of histone H3 lysine 56 acetylation (H3K56Ac) was only 0.03% and, surprisingly, this stoichiometry did not increase upon HDACi treatments. Several reported studies in the literature of H3K56Ac in humans are irreconcilable. Furthermore, H3K56Ac was considered as a potential biomarker in diagnosis and prognosis in many cancer types. Therefore we focussed on antibody specificity and determined that the majority of antibodies used in the literature recognize other acetylation sites in histone H3, especially H3K9Ac whose stoichiometry of acetylation in vivo is much higher than H3K56Ac. Additionally, chapter IV is a follow-up of our study on histone acetylation and consists of a special report describing the function of H3K56Ac in yeast and human and also contains an evaluation of a supposedly specific H3K56Ac antibody as a diagnostic tool in human cancers.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/13028
Date01 1900
CreatorsVilleneuve, Valérie
ContributorsVerreault, Alain
Source SetsUniversité de Montréal
LanguageFrench
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0034 seconds