Cette thèse porte sur la modélisation des plasmas micro-ondes en mélanges H2/CH4 et H2/CH4/B2H6, utilisés pour le dépôt de diamant intrinsèque et de diamant dopé au bore. L'objectif est d'établir des modèles de cinétique chimique afin de décrire la phase gazeuse et d'appréhender les limitations des modèles physiques nécessaires à l'étude des plasmas H2/CH4 et H2/CH4/B2H6 fonctionnant à haute densité de puissance (haute pression / haute puissance). L'étude repose sur une approche numérique à travers plusieurs modèles physique (1D et 2D) et chimiques qui permet la description physico-chimique de la phase plasma en fonction de nombreux paramètres expérimentaux (pression, puissance, composition du gaz). Une comparaison des résultats numériques a été effectuée systématiquement avec des mesures de densités intégrées radialement réalisées par TDLAS et OES pour les espèces CH4, CH3, C2H2, C2H4, C2H6, B2H6 et B. Cette comparaison a pour objectif la validation des modèles physiques et des schémas cinétiques. Des écarts significatifs entre le modèle et l'expérience ont révélé une limitation intrinsèque à l'utilisation d'une approche ID radiale pour décrire les propriétés du plasma pour les conditions de haute densité de puissance. L'utilisation d'un modèle 2D fluide conçu à partir du logiciel ANSYS Fluent propose une meilleure description des phénomènes de transport mais ne permet pas de prendre en compte les processus électroniques. L'analyse de la composition chimique des plasmas micro-onde H2/CH4, H2/B2/H6 et H2/CH4/ B2H6 a montré une limitation des schémas cinétiques décrivant ces mélanges par une large gamme de conditions opératoires. En particulier les mécanismes C/B de ces modèles ne reproduisent pas la forte influence observée expérimentalement de l'addition de méthane sur le bore atomique. Enfin une étude numérique sur la distribution spatiale des espèces borées à poximité de la surface est confrontée à des résultats expérimentaux sur le dopage de diamant en fonction de différents paramètres du procédé. / This thesis deals with modelling of high power density microware plasmas of H2/CH4 and H2/CH4/B2H6 mixtures used for growing intrinsic and boron-doped diamond films. The aim of this work is to establish chemical kinetic schemes in order to describe the gas phase composition and to manage limitations of physical models of high power density H2/CH4 and H2/CH4/B2H6 plasmas. This investigation relies on a numerical approach using different physical models (ID and 2D) as well as chemical models according to differents experimental parameters (pressures, power, gas composition). Comparisons are carried out with integrated densities of CH4, CH3, C2H2, C2H4, C2H6, B2H6 and B measured by TDLAS and OES in order to validate the models. Significant discrepancies highlight limitation of ID approach for high power density whereas the use of a 2D fluid model (Fluent based) proposes better description of transport phenomena. The chemical analysis of H2/CH4, H2/B2H6 and H2/CH4/B2H6 MW plasmas also shows a limitation of the current kinetic schemes for a wide range of operating conditions. In particular C/B mechanisms do not reproduce the strong influence of methane addition on B. At least, a numerical study of spatial composition of boron species near the substrate is compared to experimental results on doping efficiency.
Identifer | oai:union.ndltd.org:theses.fr/2015USPCD013 |
Date | 18 May 2015 |
Creators | Salem, Rania |
Contributors | Sorbonne Paris Cité, Gicquel, Alix, Rond, Catherine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds