Parkinson’s disease (PD) and autism are prevalent diseases in two disparate age groups. The neuropathology underlying these diseases involves the major neurotransmitters, dopamine and GABA, and/ or their receptors. The current study investigated mRNA gene expressions of the GAD67 in autistic striatum and the DRD1 in the Parkinsonian dorsolateral prefrontal cortex. In situ hybridization histochemistry for GAD67 mRNA levels in postmortem striatal specimens from autistic individuals was compared to those of normal controls. Similarly, a nonradioactive in situ hybridization newly emerging method, RNAscope, was used to assess the D1 receptor mRNA gene expression in postmortem specimens of the dorsolateral prefrontal cortex of PD and control brains. The GAD67 mRNA labeling intensity that was measured on X-ray films and on emulsion radioautograph sections did not vary significantly between the autistic samples and the normal control samples. On the other hand, DRD1 mRNA levels showed a significant increase in the Parkinsonian dorsolateral prefrontal cortex specimens as compared to their normal counterparts. The GAD65 mRNA labeling results corresponded with the GAD67 mRNA levels. The similar GAD67 and GAD65 mRNA patterns in the autism group and the control group may suggest that the hyper-excitability hypothesis can be accounted for by an increase in the glutamatergic activity rather than a decrease in the GABAergic system. The increase in the DRD1 mRNA in the Parkinson’s disease dorsolateral prefrontal cortex may be interpreted in light of the expected upregulation of the D1 receptor in cases of dopamine depletion as the treatment-status was unknown. In conclusion, research investigating the neurotransmitters’ gene expression in Parkinson’s disease and in autism spectrum disorder needs more neurobiological studies in order to establish some knowledge regarding the temporality, and the genetic profile mapping of the diseases. Likewise, more research is encouraged to relate the symptoms and behaviors associated with disease to their anatomical origins.
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/19182 |
Date | 03 November 2016 |
Creators | Alsamkari, Afraa Awad |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0019 seconds