Currently, the road cargo system with low or zero CO2 emission is under rapid development. Heavy-duty trucks with electrified driveline systems will be the workhorse of future freight. But developing such a brand new and very complex system and adapting it to various application scenarios, such as long-haul freight, city distribution or construction loading, is still a big problem, because there is no previous experience to refer to. There is no standard development procedure or constraint framework for uncertainty either. Simulation on a massive scale with thousands of truck agents will be of great use for developing such a road-cargo system. System engineering will be the guiding methodology for this thesis project about developing a high-performance and multi-adaptive electrified driveline system. Referring to the classical V-shape development methodology, the complex concept will be divided into different levels of subsystems, from the large application scenarios to traffic simulation, driveline system simulation, electric motor and controller blocks development, and the system integration, performance verification and output of the results. The massive scale of traffic simulation will be implemented in AnyLogic, which does not contain any accurate agent model with vehicle dynamic motion during simulation. Thus, a precise vehicle agent model needs to be developed and embedded into AnyLogic’s simulation scenario, so as to make the simulation very close to reality, and to be able to evaluate vehicle concepts as well. The driveline system will be developed in Matlab/Simulink while the information communication between them will be realised in the form of computational calculation functions through the C language program. The development of the driveline model is also progressive. First, an equation-based full glider model was constructed. It simulates the scenario of a heavy-loaded truck driving on a steep slope (30% grade), decelerating from the initial 70 km/h to 0 km/h and then remaining stationary. The second model added the functionality of velocity input and output, enabling information exchange with AnyLogic. It will judge the real-time speed and the desired speed to decide whether to accelerate or decelerate and it uses the “Bang-Bang” control method of the electric motor. But this control mode results in a massive and frequent change in the electric motor output power, leading to extremely high energy consumption and in real life significantly shortened motor lifetime. So a powerful PI controller was introduced to the third Simulink model. The PI controller is embedded in the electric motor and it will replace the “Bang-Bang” control method. The “PID” control method provides a more stable power output so that the truck’s real-time speed can approach the target speed more smoothly. This control system can adapt to a variety of speed inputs and it can decide whether to output full power or partial power, depending on the speed difference. The third version of the Simulink model with PI controller has been verified as an acceptable model through various inputs of different speeds, and it will be converted into a C language program to be embedded in AnyLogic for massive traffic simulation. / Utveckling av godstrafiksystem på väg med låga eller noll CO2-utsläpp är under snabb utveckling. Tunga lastbilar med elektrifierade drivlinesystem kommer förmodligen att vara dominerande i framtiden för vägfrakt. Att utveckla ett helt nytt system med hög teknisk komplexitet och anpassning till olika tillämpningsscenarier, som fjärrtransport, distribution eller bygg och anläggning, är en stor utmaning på grund av kritiska begränsningar i exempelvis erfarenhet. Det finns heller ingen etablerad utvecklingsmetodik baserad på tidigare erfarenhet eller ramverk för att hantera osäkerheter. Simuleringar med tusentals lastbilsagenter kan vara till stor nytta och stöd för att utveckla lastbilssystem. Systemteknik kommer att vara den vägledande metodiken för detta examensarbete för att utveckla ett avancerat och multiadaptivt elektrifierat drivlinesystem. Med hjälp av den klassiska "V"-utvecklingsmetodiken kommer drivlinemodellen delas in i olika nivåer av delsystem utifrån de tidigare nämnda olika tillämpnings-scenarierna för trafiksimulering för att sedan utföra simulering av komplett drivlinesystem, utveckling av elmotor och reglersystem till systemintegration, prestandaverifiering och analys av resultat. Trafiksimulering är tänkt att implementeras i AnyLogic, som inte innehåller någon modell baserad på fordonsdynamik där drivlineegenskaper beaktas. Därför måste en specifk fordonsdynamikmodell utvecklas för fordonsagenten och bäddas in i AnyLogics simuleringsscenario för att göra simuleringen närmre verkligheten. Drivlinesystemet har utvecklats i Matlab/Simulink för att sedan realiseras i form av beräkningsfunktioner i C. Utvecklingen av drivlinemodellen görs iterativt. Först konstruerades en ekvationsbaserad full s.k. glidermodell. Den simulerar scenariot för en tung lastad lastbil som kör i en brant sluttning (30\% lutning), bromsar in från de ursprungliga 70 km/h till 0 km/h och förblir stillastående. I den andra modellen lades till gränssnitt för agentens begynnelsevärden och tillstånd vid tidsstegets slut, vilket möjliggjorde informationsutbyte med AnyLogic. Modellen analyserar realtidshastigheten och den önskade hastigheten för att sedan avgöra om agenten ska accelerera eller bromsa. Den använder "Bang-Bang"-reglermetoden för elmotorn. Men denna reglermetod resulterar i en frekvent och stor förändring av elmotorns uteffekt, vilket leder till hög energiförbrukning och i verkligheten avsevärt förkortad motorlivslängd. Därför introducerades en PI-regulator i den tredje Simulink-modellen. PI-regulatorn är inbäddad i elmotorn och ersätter "Bang-Bang"-reglermetoden. "PID"-regulatorn ger mer stabil effekt, så att lastbilens realtidshastighet mjukare kan närma sig målhastigheten. Detta reglersystem kan anpassas till en mängd olika begynnelsehastigheter och kan bestämma om full eller deleffekt ska matas ut beroende på skillnaden mellan realtidshastighet och målhastighet. Den tredje versionen av Simulink-modellen med PI-regulator har verifierats som en acceptabel modell genom olika begynnelsehastigheter och konverterats till ett C-program för att bäddas in i AnyLogic för trafiksimulering.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-318926 |
Date | January 2022 |
Creators | Wu, Runzhe |
Publisher | KTH, Väg- och spårfordon samt konceptuell fordonsdesign |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2022:178 |
Page generated in 0.0028 seconds