Return to search

Geometric Scene Labeling for Long-Range Obstacle Detection

Autonomous Driving or self driving vehicles are concepts of vehicles knowing their environment and making driving manoeuvres without instructions from a driver. The concepts have been around for decades but has improved significantly in the last years since research in this area has made significant progress. Benefits of autonomous driving include the possibility to decrease the number of accidents in traffic and thereby saving lives. A major challenge in autonomous driving is to acquire 3D information and relations between all objects in surrounding traffic. This is referred to as \textit{spatial perception}. Stereo camera systems have become a central sensor module for advanced driver assistance systems and autonomous driving. For object detection and measurements at large distances stereo vision encounter difficulties. This includes objects being small, having low contrast and the presence of image noise. Having an accurate perception of the environment at large distances is however of high interest for many applications, especially autonomous driving. This thesis proposes a method which tries to increase the range to where generic objects are first detected using a given stereo camera setup. Objects are represented by planes in 3D space. The input image is segmented into the various objects and the 3D plane parameters are estimated jointly. The 3D plane parameters are estimated directly from the stereo image pairs. In particular, this thesis investigates methods to introduce geometric constraints to the segmentation or labeling task, i.e assigning each considered pixel in the image to a plane. The methods provided in this thesis show that despite the difficulties at large distances it is possible to exploit planar primitives in 3D space for obstacle detection at distances where other methods fail. / En autonom bil innebär att bilen har en uppfattning om sin omgivning och kan utifran det ta beslut angående hur bilen ska manövreras. Konceptet med självkörande bilar har existerat i årtionden men har utvecklats snabbt senaste åren sedan billigare datorkraft finns lättare tillgänglig. Fördelar med autonomiska bilar innebär bland annat att antalet olyckor i trafiken minskas och därmed liv räddas. En av de största utmaningarna med autonoma bilar är att få 3D information och relationer mellan objekt som finns i den omgivande trafikmiljön. Detta kallas för spatial perception och innebär att detektera alla objekt och tilldela en korrekt postition till dem. Stereo kamerasystem har fått en central roll för avancerade förarsystem och autonoma bilar. För detektion av objekt på stora avstånd träffar stereo system på svårigheter. Detta inkluderar väldigt små objekt, låg kontrast och närvaron av brus i bilden. Att ha en ackurativ perception på stora avstånd är dock vitalt för många applikationer, inte minst autonoma bilar. Den här rapporten föreslar en metod som försöker öka avståndet till där objekt först upptäcks. Objekt representeras av plan i 3D rymden. Bilder givna från stereo par segmenteras i olika object och plan parametrar estimeras samtidigt. Planens parametrar estimeras direkt från stereo bild paren. Den här rapporten utreder metoder att introducera gemoetriska begränsningar att använda vid segmenteringsuppgiften. Metoderna som presenteras i denna rapport visar att trots den höga närvaron av brus på stora avstånd är det möjligt att estimera geometriska objekt som är starka nog att möjliggöra detektion av objekt på ett avstand där andra metoder misslyckas.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-113126
Date January 2015
CreatorsHillgren, Patrik
PublisherLinköpings universitet, Datorseende, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0143 seconds