Return to search

Analysis, Design and Optimization of Grid-Tied Photovoltaic Energy System

In this dissertation, three major contributions are presented in a photovoltaic (PV) energy system. Firstly, a three-port grid-forming (GFM) microinverter and a lithium-ion battery pack are integrated at the back of PV panel. As a result, they form an AC-PV energy system module that produces an AC output voltage. The technoeconomic analysis, battery capacity optimization, PV panel size optimization, electrical and thermal model of batteries, battery heat generation model, battery management system and thermal management system are discussed in the AC-PV module by using stochastic analysis and battery test results. Secondly, a three-phase 540 KVA bidirectional inverter and a 1.86 MWh lithium-ion battery energy storage system (BESS) were integrated at the Florida Solar Energy Center (FSEC). A case study is performed for this system by acquiring the energy consumption of the building, the reduced energy consumption, the battery testing, the load shifting, and the peak shaving. The total harmonic distortion (THD) values are also provided. Among eight power management scenarios, the scenarios that include PV panels are satisfied via simulation. However, the scenarios that do not include PV panels are analyzed and presented based on the real-world setting measurements. Thirdly, a modified droop control method is designed for grid-tied and off-grid scenarios. The simulation results are obtained based on three scenarios. The first one is that the voltage and frequency regulation control algorithm is discussed when GFM inverters have the equal power ratings. Then, the load sharing control algorithm is determined based on different GFM inverters' power ratings. The last scenario includes Grid connection. Loads are added and removed from the system to ensure that the frequency and voltage stability is the range of continuous operation. The coupling reactance effect on power sharing is investigated.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1218
Date01 January 2024
CreatorsGullu, Sahin
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Thesis and Dissertation 2023-2024
RightsIn copyright

Page generated in 0.0018 seconds