Return to search

Developmental delays in methionine sulfoxide reductase mutants in Drosophila Melanogaster

Aging is a biological process that has many detrimental effects due to the
accumulation of oxidative damage to key biomolecules due to the action of free
radicals. Methionine sulfoxide reductase (Msr) functions to repair oxidative
damage to methionine residues. Msr comes in two forms, MsrA and MsrB, each
form has been shown to reduce a specific enantiomer of bound and free oxidized
methionine. Effects of Msr have yet to be studied in the major developmental
stages of Drosophila melanogaster despite the enzymes elevated expression
during these stages. A developmental timeline was determined for MsrA mutant,
MsrB mutant, and double null mutants against a wild type control. Results show
that the Msr double mutant is delayed approximately 20 hours in the early/mid
third instar stage while each of the single mutants showed no significant difference to the wild type. Data suggests that the reasoning of this phenomenon
is due to an issue gaining mass. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2013. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_13670
ContributorsHausman, William (author), Binninger, David (Thesis advisor), Florida Atlantic University (Degree grantor), Charles E. Schmidt College of Science, Department of Biological Sciences
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format95 p., application/pdf
RightsCopyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0019 seconds