Return to search

Visual Biofeedback Training Reduces Quantitative Drugs Index Scores Associated With Fall Risk

Objective: Drugs increase fall risk and decrease performance on balance and mobility tests. Conversely, whether biofeedback training to reduce fall risk also decreases scores on a published drug-based fall risk index has not been documented. Forty-eight community-dwelling older adults underwent either treadmill gait training plus visual feedback (+VFB), or walked on a treadmill without feedback. The Quantitative Drug Index (QDI) was derived from each participant's drug list and is based upon all cause drug-associated fall risk. Analysis of covariance assessed changes in the QDI during the study, and data is presented as mean ± standard error of the mean. Results: The QDI scores decreased significantly (p = 0.031) for participants receiving treadmill gait training +VFB (- 0.259 ± 0.207), compared to participants who walked on the treadmill without VFB (0.463 ± 0.246). Changes in participants QDI scores were dependent in part upon their age, which was a significant covariate (p = 0.007). These preliminary results demonstrate that rehabilitation to reduce fall risk may also decrease use of drugs associated with falls. Determination of which drugs or drug classes that contribute to the reduction in QDI scores for participants receiving treadmill gait training +VFB, compared to treadmill walking only, will require a larger participant investigation. Trial Registration ISRNCT01690611, ClinicalTrials.gov #366151-1, initial 9/24/2012, completed 4/21/2016

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-11469
Date22 October 2018
CreatorsAnson, Eric, Thompson, Elizabeth, Karpen, Samuel C., Odle, Brian L., Seier, Edith, Jeka, John, Panus, Peter C.
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceETSU Faculty Works
Rightshttp://creativecommons.org/licenses/by/4.0/

Page generated in 0.002 seconds