The goal of this thesis is the development of a tracking algorithm for populations of unmarked cancer cells that migrate in 3D in vitro gels. The tracking algorithm is intended to be a tool for analysing the motility of large population (i.e. hundreds) of cells in the context of the anti-migratory drug development and more specifically drug screening. In oncology, cancer cell migration plays pivotal roles in the spread of cancer cells from a primary tumor site to neighboring and secondary sites, i.e. the processes of tissue invasion and metastasis. Preventing such processes represents an important therapeutic approach to cancer treatment. Providing tools able to test potential anti-migratory drugs thus constitutes currently a real need in oncology therapy. The goal of drug screening in this context aims to rapidly and efficiently test the anti-migratory effects of many experimental conditions on cancer cell populations.<p>The focus in this thesis lies in two specific aspects that are important in anti-migratory drug screening: tracking cells inside an in vitro 3D environment and doing so using unmarked cells. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209703 |
Date | 21 May 2012 |
Creators | Adanja, Ivan |
Contributors | Decaestecker, Christine, Debeir, Olivier, Warzée, Nadine, Ampe, Christophe, Olivo-Marin, Jean-Christophe, Debeir, Olivier, Dubois, Frank |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Ecole polytechnique de Bruxelles – Biomédical, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | French |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 1 v. (xiii, 107 p.), No full-text files |
Page generated in 0.1006 seconds