Return to search

Data-Driven Decision Support Systems for Product Development - A Data Exploration Study Using Machine Learning

Modern product development is a complex chain of events and decisions. The ongoing digital transformation of society, increasing demands in innovative solutions puts pressure on organizations to maintain, or increase competitiveness. As a consequence, a major challenge in the product development is the search for information, analysis, and the build of knowledge. This is even more challenging when the design element comprises complex structural hierarchy and limited data generation capabilities. This challenge is even more pronounced in the conceptual stage of product development where information is scarce, vague, and potentially conflicting. The ability to conduct exploration of high-level useful information using a machine learning approach in the conceptual design stage would hence enhance be of importance to support the design decision-makers, where the decisions made at this stage impact the success of overall product development process. The thesis aims to investigate the conceptual stage of product development, proposing methods and tools in order to support the decision-making process by the building of data-driven decision support systems. The study highlights how the data can be utilized and visualized to extract useful information in design exploration studies at the conceptual stage of product development. The ability to build data-driven decision support systems in the early phases facilitates more informed decisions. The thesis presents initial descriptive study findings from the empirical studies, showing the capabilities of the machine learning approaches in extracting useful information, and building data-driven decision support systems. The thesis initially describes how the linear regression model and artificial neural networks extract useful information in design exploration, providing support for the decision-makers to understand the consequences of the design choices through cause-and-effect relationships on a detailed level. Furthermore, the presented approach also provides input to a novel visualization construct intended to enhance comprehensibility within cross-functional design teams. The thesis further studies how the data can be augmented and analyzed to extract the necessary information from an existing design element to support the decision-making process in an oral healthcare context.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-22322
Date January 2021
CreatorsAeddula, Omsri
PublisherBlekinge Tekniska Högskola, Institutionen för maskinteknik, Karlskrona
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationBlekinge Institute of Technology Licentiate Dissertation Series, 1650-2140 ; 2021:10

Page generated in 0.0128 seconds