Transmission Control Protocol (TCP) designed to deliver seamless and reliable end-to-end data transfer across unreliable networks works impeccably well in wired environment. In fact, TCP carries the around 90% of Internet traffic, so performance of Internet is largely based on the performance of TCP. However, end-to-end throughput in TCP degrades notably when operated in wireless networks. In wireless networks, due to high bit error rate and changing level of congestion, retransmission timeouts for packets lost in transmission is unavoidable. TCP misinterprets these random packet losses, due to the unpredictable nature of wireless environment, and the subsequent packet reordering as congestion and invokes congestion control by triggering fast retransmission and fast recovery, leading to underutilization of the network resources and affecting TCP performance critically. This thesis reviews existing approaches, details two proposed systems for better handling in networks with random loss and delay. Evaluation of the proposed systems is conducted using OPNET simulator by comparing against standard TCP variants and with varying number of hops.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./23254 |
Date | 13 September 2012 |
Creators | Francis, Breeson |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0021 seconds