Le Syndrome d’Apnée Obstructive du Sommeil affecte 4 à 6 % de la population en France soit près de 3 millions de personnes. Toutefois, les techniques de diagnostic usuelles ne permettent pas de déterminer de façon précise les sites d’occlusion ni de décrire les interactions fluide-paroi qui jouent un rôle important dans les processus de fermeture des voies aériennes supérieures. Au cours de ce travail, un ensemble d’outil a été mis en œuvre pour explorer les mécanismes sous-jacents conduisant à une apnée obstructive. La détermination géométrique et la caractérisation mécanique des voies aériennes supérieures, d’une part, la mesure des écoulements dans ces dernières, d’autre part, ont été réalisées par imagerie par résonance magnétique de l’hydrogène, pour les tissus, de l’hélium-3 et du fluor-19 pour les gaz. Les données obtenues ont été exploitées tout d’abord dans un modèle numérique statique pour estimer les lois d’état locales et caractériser la compliance des voies aériennes supérieures, puis, dans un modèle monodimensionnel, prenant en compte l’interaction fluide-structure et la limitation de débit au cours de l’inspiration, pour localiser les sites potentiellement responsables d’un éventuel collapsus. Par ailleurs, les écoulements de gaz d’hélium-3 et d’hexafluorure de soufre ont été simulés afin de déterminer le potentiel de ces deux modalités d’imagerie de gaz pour l’étude des obstructions des voies aériennes. La faisabilité d’une imagerie statique et dynamique par résonance magnétique du fluor a été démontrée. Avec une densité du gaz traceur bien plus importante, cette dernière technique présente une plus grande sensibilité à l’obstruction. Cette thèse ouvre ainsi une nouvelle voie de diagnostic et de guide thérapeutique personnalisé pour ce syndrome. / Obstructive Sleep Apnea (OSA) is a common disorder occurring in almost 3 million French people. However, current diagnosis methods are not sufficient to precisely define obstructing sites and doesn't take into account the fluid structure coupling which plays an important role during upper airway closing. During this thesis, we developed a series of tools exploring upper airway closing process. On the one hand, a screening tool of the structure and the mechanical properties of the upper airway, and on the other hand, a screening tool exploring with dynamic images of inert gases flow into the upper airway, were obtained using conventional hydrogen MRI coupled to magnetic resonance elastography (MRE) and helium-3 or fluor-19 gases MRI, respectively. Geometric and biomechanical data obtained using MRI/MRE are injected into a numerical model given the compliance and the state law of upper airway. Contributions of anatomical restriction on airway collapse are also investigated using a multi-compartmental two-dimensional fluid structure interaction model during a breath inspiration to predicted airway mechanical changes and collapse pressures. Furthermore, helium 3 and sulfur hexafluoride flow was modeled at steady state using commercial finite volume software to evaluate potential feasibility to image upper airway collapsibility during OSA. First dynamic MR imaging using sulfur hexafluoride (SF6) was obtained showing the feasibility of this technique. Using SF6, 6 times denser than air, shows a higher sensibility to upper airway obstruction. This thesis opens a new imaging modality to probe and to diagnose upper airway obstruction.
Identifer | oai:union.ndltd.org:theses.fr/2015PA112059 |
Date | 24 February 2015 |
Creators | Hagot, Pascal |
Contributors | Paris 11, Darrasse, Luc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0024 seconds