Return to search

Modélisation dynamique de la (bio)disponibilité des radionucléides dans les sols : approche comparative modèles-expériences appliquée au transfert de césium dans la rhizosphère / Dynamic modeling of the (bio) availability of radionuclides in soils : a comparative model-experiment approach applied to cesium transfer in the rhizosphere

Ce travail vise à développer un modèle générique capable de mieux rendre compte et de prédire les transferts de radionucléides dans le système sol/solution du sol/plante. La première partie de ce travail a été consacrée à l’analyse critique des modèles disponibles dans la littérature pour décrire l’adsorption du césium par les minéraux argileux (principal processus contrôlant sa disponibilité dans les sols). Cette analyse a débouché sur la formulation d’un nouveau modèle mécaniste combinant deux approches: la complexation de surface et l’échange d’ions. Cette approche, a été testée afin de modéliser l’adsorption du Cs sur plusieurs substrats argileux naturels. Ce travail a permis de valider le modèle proposé et de démontrer qu’il constitue un avantage majeur par rapport aux différents modèles existants. La deuxième partie a été consacrée, à la réalisation d’une série d’expérimentations, conduite en milieux contrôlés sur des systèmes dynamiques, et la modélisation de la (bio)disponibilité du Cs dans ces systèmes. A la suite de ces essais, les interactions entre solide et solution observées ont pu être correctement reproduites à partir du modèle proposé en prenant en compte la fraction argileuse du sol uniquement. Ces simulations ont également été comparées aux simulations obtenues à partir des modèles empirique (Kd) et cinétique (EK). Enfin, le développement d’un outil numérique permettant de coupler la description des interactions géochimiques au transfert vers la plante (approche cinétique) a permis de reproduire correctement les essais réalisés en Rhizotests couplant sol, solution et plante et de mieux caractériser la fraction du Cs disponible pour les plantes. / The overall objective of this work is to develop a generic model able to better account and predict the transfer of radionuclides in the soil / soil solution / plant. The first part of the work was devoted to the critical analysis of the models available in the literature to describe the cesium adsorption on clay minerals (the process that mainly controls its availability in the soils). This analysis enabled us to propose a new mechanistic model combining two approaches: surface complexation and cation exchange. Our approach has been tested in order to model the adsorption of Cs on several natural clay substrates, in a wide range of Cs concentrations and physicochemical conditions. This work allowed to validate the proposed mechanistic model and to demonstrate that it constitutes a major advantage over the various existing models. The second part was devoted, to the performing of a series of experiments, carried out in controlled environments on dynamic systems and modeling the (bio)availability of Cs in these systems. Following these tests, the observed interactions between solid and solution could be correctly reproduced with the proposed model taking into account only the clay fraction of the soil. These simulations were also compared with simulations obtained using a empiric (Kd) kinetic models (E-K approach). Finally, the development of a numerical tool for coupling the description of geochemical interactions with transfer to the plant (Michaelis-Menten approach) allowed to reproduce adequately the trials carried out in Rhizotests coupling soil, solution and plant, and to better characterize of the Cs fraction available for plants.

Identiferoai:union.ndltd.org:theses.fr/2017AIXM0547
Date18 December 2017
CreatorsCherif, Mohamed Amine
ContributorsAix-Marseille, Gérard, Frédéric, Bildstein, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds