Lors de l'extinction d'un arc de disjoncteur, on observe une brutale diminution de la conductance de l'arc, le plasma est alors soumis à un fort soufflage qui peut conduire à des écarts à l'équilibre chimique. Les modèles fondés sur l'hypothèse de l'équilibre thermodynamique local (E.T.L.) prévoient une diminution de la conductance mais ne rendent pas bien compte de l'ensemble des mécanismes régissant l'extinction. La forte convection est responsable de la présence d'une certaine quantité de gaz froid qui n'a pas été totalement dissocié dans les parties chaudes du plasma. Les particules froides peuvent se recombiner rapidement avec les électrons ce qui modifierait la résistivité du milieu. Pour mettre en évidence ce phénomène qui apparaît dans les disjoncteurs nous avons développé un modèle de l'extinction d'un arc de SF6 pour une géométrie simplifiée à deux dimensions. Ce modèle couple un modèle de cinétique chimique avec un modèle hydrodynamique et permet de calculer les densités des espèces. La mise en place de ce modèle s'est caractérisée par des calculs préliminaires pour l'initialisation : la composition du plasma à l'équilibre est obtenue à l'aide d'un modèle collisionnel ; un modèle hydrodynamique à deux dimensions a été développé et nous permet de calculer les champs de température et de vitesses en régime stationnaire. Le modèle a été complété par une étude sur la cinétique du SF6 qui nous a permis de mettre en évidence les différents processus réactionnels qui gouvernent la disparition des électrons. Nous avons simulé l'extinction de l'arc pour une intensité initiale de 50 A et pour des pressions fixées à 0.1 et 0.4 MPa, le modèle cinétique est couplé au modèle hydrodynamique à partir de l'équation des gaz parfaits et de la relation liant la densité de masse aux densités des espèces. Les principaux résultats du modèle hydrodynamique confirment que la vitesse de refroidissement est de l'ordre de -108 K.s-1. Les résultats sur la cinétique montrent que la convection agit sur les molécules de S2 qui se retrouvent, au bord de la décharge et pour des températures comprises entre 4000 K et 6000 K, en surpopulation par rapport à l'équilibre. Par processus d'échange de charge entre les particules S2 et S+ la surpopulation de S2 va conduire à une surpopulation des ions S2+. Ces ions vont principalement se recombiner avec les électrons provoquant une baisse de la population électronique, et une modification de la résistivité du milieu.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00003150 |
Date | 25 November 1997 |
Creators | Belhaouari, Jean-Belkheir |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0028 seconds