Return to search

Supervised metric learning with generalization guarantees / Apprentissage supervisé de métriques avec garanties en généralisation

Ces dernières années, l'importance cruciale des métriques en apprentissage automatique a mené à un intérêt grandissant pour l'optimisation de distances et de similarités en utilisant l'information contenue dans des données d'apprentissage pour les rendre adaptées au problème traité. Ce domaine de recherche est souvent appelé apprentissage de métriques. En général, les méthodes existantes optimisent les paramètres d'une métrique devant respecter des contraintes locales sur les données d'apprentissage. Les métriques ainsi apprises sont généralement utilisées dans des algorithmes de plus proches voisins ou de clustering.Concernant les données numériques, beaucoup de travaux ont porté sur l'apprentissage de distance de Mahalanobis, paramétrisée par une matrice positive semi-définie. Les méthodes récentes sont capables de traiter des jeux de données de grande taille.Moins de travaux ont été dédiés à l'apprentissage de métriques pour les données structurées (comme les chaînes ou les arbres), car cela implique souvent des procédures plus complexes. La plupart des travaux portent sur l'optimisation d'une notion de distance d'édition, qui mesure (en termes de nombre d'opérations) le coût de transformer un objet en un autre.Au regard de l'état de l'art, nous avons identifié deux limites importantes des approches actuelles. Premièrement, elles permettent d'améliorer la performance d'algorithmes locaux comme les k plus proches voisins, mais l'apprentissage de métriques pour des algorithmes globaux (comme les classifieurs linéaires) n'a pour l'instant pas été beaucoup étudié. Le deuxième point, sans doute le plus important, est que la question de la capacité de généralisation des méthodes d'apprentissage de métriques a été largement ignorée.Dans cette thèse, nous proposons des contributions théoriques et algorithmiques qui répondent à ces limites. Notre première contribution est la construction d'un nouveau noyau construit à partir de probabilités d'édition apprises. A l'inverse d'autres noyaux entre chaînes, sa validité est garantie et il ne comporte aucun paramètre. Notre deuxième contribution est une nouvelle approche d'apprentissage de similarités d'édition pour les chaînes et les arbres inspirée par la théorie des (epsilon,gamma,tau)-bonnes fonctions de similarité et formulée comme un problème d'optimisation convexe. En utilisant la notion de stabilité uniforme, nous établissons des garanties théoriques pour la similarité apprise qui donne une borne sur l'erreur en généralisation d'un classifieur linéaire construit à partir de cette similarité. Dans notre troisième contribution, nous étendons ces principes à l'apprentissage de métriques pour les données numériques en proposant une méthode d'apprentissage de similarité bilinéaire qui optimise efficacement l'(epsilon,gamma,tau)-goodness. La similarité est apprise sous contraintes globales, plus appropriées à la classification linéaire. Nous dérivons des garanties théoriques pour notre approche, qui donnent de meilleurs bornes en généralisation pour le classifieur que dans le cas des données structurées. Notre dernière contribution est un cadre théorique permettant d'établir des bornes en généralisation pour de nombreuses méthodes existantes d'apprentissage de métriques. Ce cadre est basé sur la notion de robustesse algorithmique et permet la dérivation de bornes pour des fonctions de perte et des régulariseurs variés / In recent years, the crucial importance of metrics in machine learningalgorithms has led to an increasing interest in optimizing distanceand similarity functions using knowledge from training data to make them suitable for the problem at hand.This area of research is known as metric learning. Existing methods typically aim at optimizing the parameters of a given metric with respect to some local constraints over the training sample. The learned metrics are generally used in nearest-neighbor and clustering algorithms.When data consist of feature vectors, a large body of work has focused on learning a Mahalanobis distance, which is parameterized by a positive semi-definite matrix. Recent methods offer good scalability to large datasets.Less work has been devoted to metric learning from structured objects (such as strings or trees), because it often involves complex procedures. Most of the work has focused on optimizing a notion of edit distance, which measures (in terms of number of operations) the cost of turning an object into another.We identify two important limitations of current supervised metric learning approaches. First, they allow to improve the performance of local algorithms such as k-nearest neighbors, but metric learning for global algorithms (such as linear classifiers) has not really been studied so far. Second, and perhaps more importantly, the question of the generalization ability of metric learning methods has been largely ignored.In this thesis, we propose theoretical and algorithmic contributions that address these limitations. Our first contribution is the derivation of a new kernel function built from learned edit probabilities. Unlike other string kernels, it is guaranteed to be valid and parameter-free. Our second contribution is a novel framework for learning string and tree edit similarities inspired by the recent theory of (epsilon,gamma,tau)-good similarity functions and formulated as a convex optimization problem. Using uniform stability arguments, we establish theoretical guarantees for the learned similarity that give a bound on the generalization error of a linear classifier built from that similarity. In our third contribution, we extend the same ideas to metric learning from feature vectors by proposing a bilinear similarity learning method that efficiently optimizes the (epsilon,gamma,tau)-goodness. The similarity is learned based on global constraints that are more appropriate to linear classification. Generalization guarantees are derived for our approach, highlighting that our method minimizes a tighter bound on the generalization error of the classifier. Our last contribution is a framework for establishing generalization bounds for a large class of existing metric learning algorithms. It is based on a simple adaptation of the notion of algorithmic robustness and allows the derivation of bounds for various loss functions and regularizers.

Identiferoai:union.ndltd.org:theses.fr/2012STET4003
Date11 December 2012
CreatorsBellet, Aurélien
ContributorsSaint-Etienne, Sebban, Marc, Habrard, Amaury
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0157 seconds