Ce travail a été développé dans le cadre du projet européen FACETS-ITN, dans le domaine des Neurosciences Computationnelles. Son but est d'améliorer la compréhension des réseaux de neurones stochastiques de taille finie, pour des sources corrélées à caractère aléatoire et pour des matrices de connectivité biologiquement réalistes. Ce résultat est obtenu par l'analyse de la matrice de corrélation du réseau et la quantification de la capacité de codage du système en termes de son information de Fisher. Les méthodes comprennent diverses techniques mathématiques, statistiques et numériques, dont certaines ont été importés d'autres domaines scientifiques, comme la physique et la théorie de l'estimation. Ce travail étend de précédents résultats fondées sur des hypothèses simplifiées qui ne sont pas réaliste d'un point de vue biologique et qui peuvent être pertinents pour la compréhension des principes de travail liés cerveau. De plus, ce travail fournit les outils nécessaires à une analyse complète de la capacité de traitement de l'information des réseaux de neurones, qui sont toujours manquante dans la communauté scientifique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00850289 |
Date | 25 September 2013 |
Creators | Fasoli, Diego |
Publisher | Université Nice Sophia Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds