L'accroissement permanent du commerce intercontinental et la mondialisation s'accompagnent d'une augmentation de la productivité des ports et des terminaux à conteneurs. Le besoin de compétitivité des exploitants auquel s'additionnent les législations environnementales, poussent les fabricants d'engins de manutention de conteneurs à développer de nouvelles solutions afin de produire des machines plus respectueuses de l'environnement à un coût de possession acceptable. Pour ce faire, l'hybridation des sources d'énergie et l'utilisation de chaînes d'actionnement plus efficaces d'un point de vue énergétique sont les solutions envisagées. En conséquence, les cahiers des charges sont de plus en plus complexes, et les spécifications qu'ils stipulent sont de nature hétérogène. Ce travail de thèse s'intéresse à deux aspects majeurs en lien avec ces problématiques. Il s'articule donc d'une part autour d'un développement méthodologique concernant le dimensionnement de systèmes suractionnés par couplage de problèmes d'inversion et d'optimisation, et d'autre part, autour d'un développement applicatif visant la conception, la commande et la validation expérimentale d'une chaîne d'actionnement hybride d'un engin portuaire. Premièrement, nous proposons une procédure de construction d'un modèle s'appuyant sur le langage bond graph permettant de prendre en compte des spécifications exprimées en termes de critère à minimiser et de fonctions du temps désirées en sortie du système. Ce problème prend alors la forme d'un problème couplé d'inversion-optimisation. Du modèle bond graph obtenu, il est possible de déterminer directement les conditions nécessaires d'optimalité, et donc le système d'équations algébrodifférentielles associé. Nous nous intéressons ensuite à l'extension de la procédure de représentation d'un problème d'optimisation seul, dans le cas où des non linéarités apparaissent au niveau des phénomènes de dissipation d'énergie. Dans un second temps, nous proposons une nouvelle architecture pour un engin de manutention de conteneurs afin d'améliorer son efficacité énergétique. Cette solution de récupération d'énergie à la descente du conteneur est basée sur un transformateur hydraulique. L'énergie est stockée dans un accumulateur hydropneumatique, puis, elle est restituée grâce à un moteur hydraulique complémentaire couplé au moteur diesel. Un redimensionnement de la chaîne d'actionnement hydraulique ainsi qu'une stratégie de commande plus adaptée sont également proposées. Ces modifications offrent la possibilité de réaliser une récupération d'énergie à la décélération du véhicule sans ajout de composant majeur. L'architecture globale obtenue associée à une stratégie de commande adéquate génèrent une réduction de la consommation de carburant de 16% à 18%. Finalement, une validation expérimentale du système de récupération d'énergie potentielle est effectuée et les performances dynamiques et énergétiques sont analysées avec la commande proposée. / The continuously increasing of the intercontinental trade as well as the globalization lead to the need of higher productivity for ports and container terminals. In order to fulfill the need of competitiveness of terminal operators and in the same time respect the environmental legislation, container handling machine manufacturers are developping new solutions. Hybridization of energy sources is an interesting way but using more energy efficient actuation lines is also suitable. As a consequence, specifications are more and more complex, and can in particular have heterogeneous natures. In this thesis, the focus is made on two main topics linked to those problematics. On the one hand, a methodology concerning the sizing of over-actuated systems thanks to a coupling between inverse problems and dynamic optimization is exposed. On the other hand, the design, control strategies and an experimental validation of an hybrid actuation line applied to an container handling machine is presented. First of all, we propose a new procedure based on the bond graph language allowing the designer to take into account simultaneously two types of specifications, namely a cost function to minimize and functions of time specifying desired outputs of the system. This results in a coupled problem of state-space inversion and optimization. The procedure lead to a bond graph from which it is possible to directly derive the analytical system of the problem. The fundamental theory for proving the effectiveness of this procedure is carried out using the port hamiltonian systems. The bond graph representation of an optimal control problem is then extended to systems involving non linearities on dissipative R elements. In a second part, a new actuation architecture is proposed for a container handling machine, in order to improve the fuel efficiency. On the one hand, a transformer based system to recover the potential energy released during container lowering is exposed. This energy is stored into a hydropneumatic accumulator. Then, it is returned thanks to an extra hydraulic motor coupled to the engine shaft. On the other hand, a resizing of the main hydraulic pumps as well as a more suitable control law is proposed in order to make the engine work at better efficiency points. All those evolutions previously mentionned give now the possibility to perform kinetic energy recuperation during vehicle deceleration without adding any major component. The new architecture combined with more effetive control laws lead to a fuel consumption reduction of 16% up to 18%. Finally, the potential energy recovery system is validated on a test rig. The control laws are implemented and the dynamic and energetic performances are then analysed.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEI121 |
Date | 18 November 2016 |
Creators | Schaep, Thomas |
Contributors | Lyon, Bideaux, Eric, Favre, Wilfrid |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0115 seconds