A critical function of the human visual system is to parse objects from the larger context of the environment, allowing for the identification of, and potential interaction with, those objects. The use of contextual information allows us to rapidly locate, identify, and interact with objects that appear in the environment. Contextual information can help specify an object's location within the environment (allocentric encoding) or with respect to the observer (egocentric encoding).
Understanding how contextual information influences perceptual organization, and the neural systems that process a complex scene, is critical in understanding how contextual information assists in parsing local information from background. In the real world, relying on context is typically beneficial, as most objects occur in circumscribed environments. However, there are circumstances in which context can harm performance. In the case of visual illusions, relying on the context can bias observers' perceptions and cause significant motor errors. Studying the illusory conditions under which perceptual/motor functions are "fooled", or breakdown, can provide valuable information about how the brain computes allocentric and egocentric frames of reference.
The following studies examine how attentional (Chapters II & III) manipulations of visuospatial context affect components of observers' egocentric reference frames (e.g., perceived vertical or subjective midline) and how neural manipulations (Chapter IV) can modulate observers' reliance on contextual information. In Chapter II, the role of attentional control settings on contextual processing is examined. Chapter III addresses the question of how visuospatial shifts of attention interact with an egocentric frame of reference. Finally, Chapter IV examines the functional role of superior parietal cortex in the processing of egocentric contextual information.
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/12985 |
Date | 11 July 2013 |
Creators | Lester, Ben |
Contributors | Dassonville, Paul |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Rights | All Rights Reserved. |
Page generated in 0.0308 seconds