Quantum degenerate molecular gases are of interest for the unique level of control they offer over chemical interactions and processes. To reach the quantum degenerate regime, these molecular gases must be cooled to ultracold temperatures, typically on the order of 100 nanoKelvins. Unlike atoms, with a few-level system that facilitates cooling, molecules represent a many-level system, which makes these temperatures experimentally difficult to achieve. As a result, experiments have turned to photoassociation and Feshbach resonance as shortcuts to form ultracold molecules from already ultracold atoms. Photoassociation and Feshbach resonance have been utilized to successfully create stable quantum degenerate molecules, but not on a routine basis, and only for a small range of molecular species. The primary focus of this thesis will be to study photoassociation and Feshbach resonance, and investigate possible routes to more efficient long-lived quantum degenerate molecule formation. We will also investigate realistic limiting conditions to open the possibility to more routine molecules, and to molecular species that are currently inaccessible. Overall, we find combined photoassociation and Feshbach resonance are viable schemes for efficiently creating quantum degenerate molecules, under realistic restrictions such as low laser intensity, narrow Feshbach resonance, and strong elastic collisions. As the techniques to create quantum degenerate molecules become more robust and experimentally available, the creation of colder, larger, and more long-lived samples will facilitate study of these molecules, and spur development into new applications. / Physics
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/3409 |
Date | January 2014 |
Creators | Phou, Pierre |
Contributors | Metz, Andreas, Burkhardt, T. W. (Theodore W.), 1940-, Romanov, Dmitri, Mackie, Matt |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 101 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/3391, Theses and Dissertations |
Page generated in 0.0025 seconds