Return to search

L'élastographie par résonance magnétique et l'élastographie ultrasonore par ondes de cisaillement supersonic : simulation, comparaison expérimentale et l'application pour la caractérisation du foie / Magnetic Resonance Elastography and Supersonic Shear Imaging : simulation, experimental comparison and application to the characterization of the liver

L’élastographie est une modalité d'imagerie médicale émergente qui permet de mesurer les propriétés mécaniques des tissus moux humains. Ces mesures peuvent servir de biomarqueurs pour l'amélioration de la prise en charge des maladies, du diagnostic précoce et de l'évaluation de la sévérité, au suivi de la réponse au traitement. Parmi les différentes approches de l’élastographie, l'élastographie par Résonance Magnétique (ERM) et l’élastographie ultrasonore par ondes de cisaillement (Supersonic Shear Imaging (SSI)) suscitent des intérêts particuliers. Ces deux modalités ont été largement étudiées pour des applications cliniques multiples. Toutefois, chaque modalité repose sur des conditions d'acquisition et de reconstruction différentes et caractérisées par leur propres limites qui peuvent induire des biais de mesure intra-et inter-modalité et donc entraver l'interchangeabilité des deux modalités pour des applications cliniques. Dans un premier temps, ma thèse a porté sur l'identification des biais de mesure entre ERM et SSI. Grâce à une comparaison méthodologique approfondie des deux modalités, nous avons identifié les différentes caractéristiques de fréquence des ondes de cisaillement générées par les deux modalités et les contraintes spécifiques de reconstruction, en particulier en ERM, comme les principales sources de biais de mesure entre les deux modalités. Dans un deuxième temps, une étude de simulation a étéeffectuée afin de caractériser l'influence des conditions d'acquisition et de reconstruction sur l'exactitude et la précision des mesures d’ERM. Nous avons établi des abaci in silico pour identifier le nombre de voxels par longueur d'onde idéal (rapport λ/a) pour obtenir des mesures ERM exactes et précises. En outre, nous avons montré que le rééchantillonnage pouvait s’avérer efficace afin de répondre aux critères de λ/a favorable lorsque le nombre de voxels par longueur d'onde initial était mal défini. Les résultats finaux, qui sont généralement calculés à partir des trois directions d'encodage, peuvent être améliorés grâce à des stratégies de pondération appropriées qui reposent sur le champ rotationnel du déplacement de l'onde de cisaillement. Pour la modalité SSI, nous avons utilisé le paramètre de qualité fourni par le fabricant afin d’éliminer raisonnablement des résultats peu fiables et améliorer encore la qualité des mesures. Ensuite nous avons intégré les stratégies d'optimisation proposées dans chaque modalité pour effectuer des études de comparaison expérimentales impartiales entre ces deux modalités. Des études in vitro ont été effectuées sur des fantômes commerciaux calibrés et aussi des fantômes à la base de l'alcool polyvinylique. Des résultats expérimentaux confirment bien ceux de la simulation. Des mesures SSI et ERM sont en bon accord quand des biais reliés à la théorie, l'expérimentation et la reconstruction sont minimisés. Des études in vivo ont été ensuite effectuées sur le foie de deux volontaires sains. On a constaté que lorsque le foie est quasi-élastique, des mesures SSI et ERM avec la qualité optimisée concordent bien les uns et les autres, ils sont donc interchangeables. Dans le cas du tissu hépatique viscoélastique, des mesures SSI et ERM dépendent de la fréquence. Dans ce contexte, des mesures ERM et SSI pour la même fréquence spécifique sont nécessaires pour réaliser une comparaison impartiale entre des deux modalités. / Elastography is an emerging medical imaging modality which permits to measure the mechanical properties of human soft tissue. The measured mechanical properties can serve as potential biomarkers for improving the management of diseases, from early diagnosis, to severity evaluation and therapy response monitoring. Among different approaches, Magnetic Resonance Elastography (MRE) and Supersonic Shear Imaging (SSI) have shown particular interests. The two modalities have been widely investigated for multiple clinical applications. However, each modality is challenged by specific acquisition and reconstruction conditions which may induce intra- and inter-modality measurement biases and hence impede the interchangeability of the two modalities. The first part of my thesis focused on identifying the measurement biases between MRE and SSI. Through a thorough methodological comparison study, we recognized different frequency characteristics of generated shear waves for the two modalities and modality specific reconstruction validity issues as the main sources for the measurement biases between the two modalities. Then through a dedicated simulation study, we established an in silico abaci to identify the favorable range of number of voxels per wavelength which leads to accurate and precise MRE. Moreover, resampling was proven effective to regulate poorly defined number of voxels per wavelength to the favorable range. The overall outcome, which is usually computed from the three acquired motionencoded directions, may further be improved by appropriate weighting strategies that are based on curl of shear displacement field. For SSI, we referred to the quality parameter provided by the manufacturer to reasonably eliminate unreliable results so as to further improve the measurement quality. After establishing the potential measurement biases between MRE and SSI, we incorporated the proposed quality optimization strategies into both modalities in order to perform unbiased experimental comparison studies between the two modalities. First, in vitro studies were carried out on commercial calibrated phantoms as well as home-made polyvinyl alcohol phantoms. Experimental results corroborate well the simulation findings. MRE and SSI measurements agree well witheach other when theory, experiment, and reconstruction biases are minimized. In vivo studies were then performed on the livers of two healthy volunteers. We found that when the liver is quasi-elastic, the quality-guided MRE and SSI measurements agree well with each other and hence are interchangeable. In case of viscoelastic liver tissue, both MRE and SSI measurements are frequency dependent. Thus frequency-specific measurements are essential for cross-validating the measurements of these two modalities.

Identiferoai:union.ndltd.org:theses.fr/2017SACLS483
Date11 December 2017
CreatorsYue, Jinlong
ContributorsUniversité Paris-Saclay (ComUE), Buvat, Irène
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds