Return to search

Application of Effective Field Theories to Problems in Nuclear and Hadronic Physics

The Effective Field Theory formalism is applied to the study of problems in hadronic and nuclear physics. We develop a framework to study the exclusive two-body decays of bottomonium into two charmed mesons and apply it to study the decays of the C-even bottomonia. Using a sequence of effective field theories, we take advantage of the separation between the scales contributing to the decay processes, 2m(b) ≫ m(c) ≫∧(QCD). We prove that, at leading order in the EFT power counting, the decay rate factorizes into the convolution of two perturbative matching coefficients and three non-perturbative matrix elements, one for each hadron. We calculate the relations between the decay rate and non-perturbative bottomonium and D-meson matrix elements at leading order, with next-to-leading log resummation. The phenomenological implications of these relations are discussed. At lower energies, we use Chiral Perturbation Theory and nuclear EFTs to set up a framework for the study of time reversal (T) symmetry in one- and few-nucleon problems. We consider T violation from the QCD θ term and from all the possible dimension 6 operators, expressed in terms of light quarks, gluons and photons, that can be added to the Standard Model Lagrangian. We construct the low energy chiral Lagrangian stemming from different TV sources, and derive the implications for the nucleon Electric Dipole Form Factor and the deuteron T violating electromagnetic Form Factors. Finally, with an eye to applications to nuclei with A ≥ 2, we construct the T violating nucleon-nucleon potential from different sources of T violation.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/202538
Date January 2011
CreatorsMereghetti, Emanuele
ContributorsFleming, Sean P., van Kolck, Bira, Su, Shufang, Rutherfoord, John, Touissant, Doug, Fleming, Sean P.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds