With the ongoing increasing focus on the development of intermittent renewable sources, there is a clear need for energy storage solutions that can handle large fluctuations in power and store large amounts of energy. Hydrogen i seen as a candidate as a possible energy carrier for this purpose, and many hydrogen projects have been seen occurring over the world. In order to enable further development of hydrogen systems for the production and utilization of hydrogen fuel, modeling can be performed to investigate the performance, feasibility, and responses of these systems. There is, however, a need for further development of electrolyzer models for production, and fuel cell models for the utilization of hydrogen fuels. The goal of this thesis is to further develop models of electrolyzers and fuel cells with an electrical engineering perspective to be used in further research. This is done by reviewing relevant research related to these topics and narrowing down the findings into comprehensive, simple, and dynamic models in MATLAB/Simulink. These models are described in this thesis, along with the obtained static and dynamic results of the hydrogen production and utilization systems. The models include the option to parameterize to the steady-state data to replicate the static behavior and specify dynamics in terms of capacitive effects and reactant pressure controls for the fuel cell. The Simulink models created can be utilized to further develop various other system components.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-479077 |
Date | January 2022 |
Creators | George, Ludwig |
Publisher | Uppsala universitet, Institutionen för elektroteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC ES, 1650-8300 ; 22025 |
Page generated in 0.0018 seconds