Return to search

Scalable Genome Engineering in Electrowetting on Dielectric Digital Microfluidic Systems

<p>Electrowetting-on-dielectric (EWD) digital microfluidics is a droplet-based fluid handling technology capable of radically accelerating the pace of genome engineering research. EWD-based laboratory-on-chip (LoC) platforms demonstrate excellent performance in automating labor-intensive laboratory protocols at ever smaller scales. Until now, there has not been an effective means of gene transfer demonstrated in EWD microfluidic platforms. This thesis describes the theoretical and experimental approaches developed in the demonstration of an EWD-enabled electrotransfer device. Standard microfabrication methods were employed in the integration of electroporation (EP) and EWD device architectures. These devices enabled the droplet-based bulk transformation of E. coli with plasmid and oligo DNA. Peak on-chip transformation efficiencies for the EP/EWD device rivaled that of comparable benchtop protocols. Additionally, ultrasound induced in-droplet microstreaming was developed as a means of improving on-chip electroporation. The advent of electroporation in an EWD platform offers synthetic biologists a reconfigurable, programmable, and scalable fluid handling platform capable of automating next-generation genome engineering methods. This capability will drive the discovery and production of exotic biomaterials by providing the instrumentation necessary for rapidly generating ultra-rich genomic diversity at arbitrary volumetric scales.</p> / Dissertation

Identiferoai:union.ndltd.org:DUKE/oai:dukespace.lib.duke.edu:10161/10496
Date January 2015
CreatorsMadison, Andrew Caldwell
ContributorsFair, Richard B
Source SetsDuke University
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0013 seconds