Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly
employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in
matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles
with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed
over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research
concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is
reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are
given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:tut/oai:encore.tut.ac.za:d1000798 |
Date | 07 December 2006 |
Creators | Katskov, DA |
Publisher | Elsevier |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Text |
Format | |
Rights | © 2007 Elsevier B.V. |
Relation | Spectrochimica Acta |
Page generated in 0.0023 seconds