In this dissertation the electronic and high-energy optical properties of thin nanoscale
films of the magnetic topological insulator (MTI) (V,Cr)y(BixSb1-x)2-yTe3 are studied
by means of X-ray photoelectron spectroscopy (XPS) and electron energy-loss
spectroscopy (EELS). Magnetic topological insulators are presently of broad interest
as the combination of ferromagnetism and spin-orbit coupling in these materials
leads to a new topological phase, the quantum anomalous Hall state (QAHS), with
dissipation less conduction channels. Determining and controlling the physical
properties of these complex materials is therefore desirable for a fundamental understanding
of the QAHS and for their possible application in spintronics. EELS can
directly probe the electron energy-loss function of a material from which one can
obtain the complex dynamic dielectric function by means of the Kramers-Kronig
transformation and the Drude-Lindhard model of plasmon oscillations.
The XPS core-level spectra in (V,Cr)y(BixSb1-x)2-yTe3 are analyzed in detail with
regards to inelastic background contributions. It is shown that the spectra can be
accurately described based on the electron energy-loss function obtained from an
independent EELS measurement. This allows for a comprehensive and quantitative
analysis of the XPS data, which will facilitate future core-level spectroscopy studies
in this class of topological materials. From the EELS data, furthermore, the bulk and
surface optical properties were estimated, and compared to ab initio calculations
based on density functional theory (DFT) performed in the GW approximation
for Sb2Te3. The experimental results show a good agreement with the calculated
complex dielectric function and the calculated energy-loss function. The positions of
the main plasmon modes reported here are expected to be generally similar in other
materials in this class of nanoscale TI films. Hence, the present work introduces
EELS as a powerful method to access the high-energy optical properties of TI
thin films. Based on the presented results it will be interesting to explore more
systematically the effects of stoichiometry, magnetic doping, film thickness and
surface morphology on the electron-loss function, potentially leading to a better
understanding of the complex interplay of structural, electronic, magnetic and
optical properties in MTI nanostructures. / Die vorliegende Dissertation beschäftigt sich mit den elektronischen und hochen- ergetischen optischen Eigenschaften von auf der Nanoskala dünnen Filmen des magnetischen topologischen Isolators (MTI) (V,Cr)y(BixSb1−x)2−yTe3 mithilfe von Röntgenphotoelektronenspektroskopie (engl.: X-ray photoelectron spectroscopy, XPS), sowie Elektronenenergieverlustspektroskopie (engl.: electron energy-loss spectroscopy, EELS). Magnetische topologische Isolatoren sind gegenwärtig von großem Interesse, da die Kombination von Ferromagnetismus und Spin-Bahn- Kopplung in diesen Materialien zu einer neuen topologischen Phase führt, der Quanten-Anomalen-Hall-Phase (engl.: quantum anomalous Hall state, QAHS), die sich durch verlustfreie Leitungskanäle auszeichnet. Bestimmung und Kontrolle der physikalischen Eigenschaften dieser komplexen Materialien ist somit erstrebenswert für ein fundamentales Verständnis des QAHS sowie für Anwendungen in der Spin- tronik. EELS erlaubt die direkte Untersuchung der Elektronenenergieverlustfunk- tion eines Materials, aus der man, mithilfe der Kramers-Kronig-Transformation und des Drude-Lindhard-Modells von Plasmonenoszillationen, die komplexe dynamis- che dielektrische Funktion des Materials erhält.
In den XPS-Spektren der Rumpfniveaus in (V,Cr)y(BixSb1−x)2−yTe3 wird detail- liert insbesondere der Beitrag des inelastischen Untergrunds analysiert. Es kann gezeigt werden, dass, basierend auf der in einem unabhängigen EELS-Experiment gewonnenen Elektronenenergieverlustfunktion, die Rumpfniveauspektren präzise beschrieben werden können. Dies erlaubt eine umfangreiche und quantitative Anal- yse der Daten, was zukünftige Rumpfniveaustudien dieser Klasse topologischer Materialien erleichtern wird. Die mit EELS gewonnenen Daten ermöglichen weiter- hin eine Abschätzung der optischen Eigenschaften von Volumen und Oberfläche der Materialien, die in der vorliegenden Arbeit mit ab initio Berechnungen aus der Literatur für Sb2Te3 verglichen werden, welche auf Basis der Dichtefunktionaltheo- rie (DFT) in GW-näherung durchgeführt wurden. Die experimentellen Ergebnisse zeigen gute Übereinstimmungen mit der berechneten komplexen dielektrischen Funktion, sowie mit der Energieverlustfunktion. Es wird erwartet, dass die hier beschriebenen Positionen der Hauptplasmonenmoden im Allgemeinen ähnlich zu denen anderer Materialien dieser Klasse auf der Nanoskala dünner topologischer Isolatoren sind. Somit stellt die vorliegende Arbeit das EELS Experiment als eine mächtige Methode vor, die einen Zugang zu den hochenergetischen optischen Eigen- schaften dünner TIs schafft. Basierend auf den hier vorgestellten Ergebnissen bleibt es interessant sein die Auswirkungen von Stöchiometrie, magnetischer Dotierung, Filmdicke, sowie Oberflächenmorphologie auf die Energieverlustfunktion system- atischer zu untersuchen, um damit ein besseres Verständnis für das komplexe Zusammenspiel aus strukturellen, elektronischen und optischen Eigenschaften in MTI-Nanostrukturen zu erlangen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:15722 |
Date | January 2018 |
Creators | Al-Baidhani, Mohammed |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0034 seconds