Return to search

Seleção de características para reconhecimento biométrico baseado em sinais de eletrocardiograma / Feature selection for biometric recognition based on electrocardiogram signals

O campo da Biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de vários aspectos físicos e/ou comportamentais do ser humano. Diversas modalidades biométricas têm sido propostas para reconhecimento de pessoas, como impressões digitais, íris, face e voz. Estas modalidades biométricas possuem características distintas em termos de desempenho, mensurabilidade e aceitabilidade. Uma questão a ser considerada com a aplicação de sistemas biométricos em mundo real é sua robustez a ataques por circunvenção, repetição e ofuscação. Esses ataques estão se tornando cada vez mais frequentes e questionamentos estão sendo levantados a respeito dos níveis de segurança que esta tecnologia pode oferecer. Recentemente, sinais biomédicos, como eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG) têm sido estudados para uso em problemas envolvendo reconhecimento biométrico. A formação do sinal do ECG é uma função da anatomia estrutural e funcional do coração e dos seus tecidos circundantes. Portanto, o ECG de um indivíduo exibe padrão cardíaco único e não pode ser facilmente forjado ou duplicado, o que tem motivado a sua utilização em sistemas de identificação. Entretanto, a quantidade de características que podem ser extraídas destes sinais é muito grande. A seleção de característica tem se tornado o foco de muitas pesquisas em áreas em que bases de dados formadas por dezenas ou centenas de milhares de características estão disponíveis. Seleção de característica ajuda na compreensão dos dados, reduzindo o custo computacional, reduzindo o efeito da maldição da dimensionalidade e melhorando o desempenho do preditor. O foco da seleção de característica é selecionar um subconjunto de característica a partir dos dados de entrada, que pode descrever de forma eficiente os dados de entrada ao mesmo tempo reduzir os efeitos de ruídos ou características irrelevantes e ainda proporcionar bons resultados de predição. O objetivo desta dissertação é analisar o impacto de algumas técnicas de seleção de característica tais como, Busca Gulosa, Seleção \\textit, Algoritmo Genético, Algoritmo Memético, Otimização por Enxame de Partículas sobre o desempenho alcançado pelos sistemas biométricos baseado em ECG. Os classificadores utilizados foram $k$-Vizinhos mais Próximos, Máquinas de Vetores Suporte, Floresta de Caminhos Ótimos e classificador baseado em distância mínima. Os resultados demonstram que existe um subconjunto de características extraídas do sinal de ECG capaz de fornecer altas taxas de reconhecimento / The field of biometrics includes a variety of technologies used to identify and verify the identity of a person by measuring and analyzing various physical and/or behavioral aspects of the human being. Several biometric modalities have been proposed for recognition of people, such as fingerprints, iris, face and speech. These biometric modalities have distinct characteristics in terms of performance, measurability and acceptability. One issue to be considered with the application of biometric systems in real world is its robustness to attacks by circumvention, spoof and obfuscation. These attacks are becoming more frequent and more questions are being raised about the levels of security that this technology can offer. Recently, biomedical signals, as electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) have been studied for use in problems involving biometric recognition. The ECG signal formation is a function of structural and functional anatomy of the heart and its surrounding tissues. Therefore, the ECG of an individual exhibits unique cardiac pattern and cannot be easily forged or duplicated, that have motivated its use in various identification systems. However, the amount of features that can be extracted from this signal is very large. The feature selection has become the focus of much research in areas where databases formed by tens or hundreds of thousands of features are available. Feature Selection helps in understanding data, reducing computation requirement, reducing the effect of curse of dimensionality and improving the predictor performance. The focus of feature selection is to select a subset of features from the input which can efficiently describe the input data while reducing effects from noise or irrelevant features and still provide good prediction results. The aim of this dissertation is to analyze the impact of some feature selection techniques, such as, greedy search, Backward Selection, Genetic Algorithm, Memetic Algorithm, Particle Swarm Optimization on the performance achieved by biometric systems based on ECG. The classifiers used were $k$-Nearest Neighbors, Support Vector Machines, Optimum-Path Forest and minimum distance classifier. The results demonstrate that there is a subset of features extracted from the ECG signal capable of providing high recognition rates

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19122016-003653
Date22 June 2016
CreatorsFelipe Gustavo Silva Teodoro
ContributorsClodoaldo Aparecido de Moraes Lima, Karina Valdivia Delgado, Aparecido Nilceu Marana, Fernando José von Zuben
PublisherUniversidade de São Paulo, Sistemas de Informação, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds