Return to search

Optimization and implementation of bio-inspired feature extraction frameworks for visual object recognition / Optimisation et implémentation de méthodes bio-inspirées d'extraction de caractéristiques pour la reconnaissance d'objets visuels

L'industrie a des besoins croissants en systèmes dits intelligents, capable d'analyserles signaux acquis par des capteurs et prendre une décision en conséquence. Cessystèmes sont particulièrement utiles pour des applications de vidéo-surveillanceou de contrôle de qualité. Pour des questions de coût et de consommation d'énergie,il est souhaitable que la prise de décision ait lieu au plus près du capteur. Pourrépondre à cette problématique, une approche prometteuse est d'utiliser des méthodesdites bio-inspirées, qui consistent en l'application de modèles computationels issusde la biologie ou des sciences cognitives à des problèmes industriels. Les travauxmenés au cours de ce doctorat ont consisté à choisir des méthodes d'extractionde caractéristiques bio-inspirées, et à les optimiser dans le but de les implantersur des plateformes matérielles dédiées pour des applications en vision par ordinateur.Tout d'abord, nous proposons un algorithme générique pouvant être utilisés dans différentscas d'utilisation, ayant une complexité acceptable et une faible empreinte mémoire.Ensuite, nous proposons des optimisations pour une méthode plus générale, baséesessentiellement sur une simplification du codage des données, ainsi qu'une implantationmatérielle basées sur ces optimisations. Ces deux contributions peuvent par ailleurss'appliquer à bien d'autres méthodes que celles étudiées dans ce document. / Industry has growing needs for so-called “intelligent systems”, capable of not only ac-quire data, but also to analyse it and to make decisions accordingly. Such systems areparticularly useful for video-surveillance, in which case alarms must be raised in case ofan intrusion. For cost saving and power consumption reasons, it is better to perform thatprocess as close to the sensor as possible. To address that issue, a promising approach isto use bio-inspired frameworks, which consist in applying computational biology modelsto industrial applications. The work carried out during that thesis consisted in select-ing bio-inspired feature extraction frameworks, and to optimize them with the aim toimplement them on a dedicated hardware platform, for computer vision applications.First, we propose a generic algorithm, which may be used in several use case scenarios,having an acceptable complexity and a low memory print. Then, we proposed opti-mizations for a more global framework, based on precision degradation in computations,hence easing up its implementation on embedded systems. Results suggest that whilethe framework we developed may not be as accurate as the state of the art, it is moregeneric. Furthermore, the optimizations we proposed for the more complex frameworkare fully compatible with other optimizations from the literature, and provide encourag-ing perspective for future developments. Finally, both contributions have a scope thatgoes beyond the sole frameworks that we studied, and may be used in other, more widelyused frameworks as well.

Identiferoai:union.ndltd.org:theses.fr/2016DIJOS016
Date10 November 2016
CreatorsBoisard, Olivier
ContributorsDijon, Paindavoine, Michel, Doussot, Michel, Brousse, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds