Return to search

Etude asymptotique de grands objets combinatoires aléatoires

Dans ce travail, nous nous sommes intéressés à l'étude asymptotique d'objets combinatoires aléatoires. Deux thèmes ont particulièrement retenu notre attention : les cartes planaires aléatoires et les modèles combinatoires liés à la théorie des fragmentations. La théorie mathématique des cartes planaires aléatoires est née à l'aube de notre millénaire avec les travaux pionniers de Benjamini & Schramm, Angel & Schramm et Chassaing & Schaeffer. Elle a ensuite beaucoup progressé, mais à l'heure où ces lignes sont écrites, de nombreux problèmes fondamentaux restent ouverts. Résumons en quelques mots clés nos principales contributions dans le domaine : l'introduction et l'étude du cactus brownien (avec J.F. Le Gall et G. Miermont), l'étude de la quadrangulation infinie uniforme vue de l'infini (avec L. Ménard et G. Miermont), ainsi que des travaux plus théoriques sur les graphes aléatoires stationnaires d'une part et les graphes empilables dans $\R^d$ d'autre part (avec I. Benjamini). La théorie des fragmentations est beaucoup plus ancienne et remonte à des travaux de Kolmogorov (1941) et de Filippov (1961). Elle est maintenant bien développée (voir par exemple l'excellent livre de J. Bertoin), et nous ne nous sommes pas focalisés sur cette théorie mais plutôt sur ses applications à des modèles combinatoires. Elle s'avère en effet très utile pour étudier différents modèles de triangulations récursives du disque (travail effectué avec J.F. Le Gall) et les recherches partielles dans les quadtrees (travail effectué avec A. Joseph).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00607721
Date10 June 2011
CreatorsCurien, Nicolas
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0016 seconds