Return to search

Trochoidal Milling of AlSiCp with CVD Diamond Coated End Mills

Metal matrix composites have seen a rise in demand within the last decade. Aluminum alloy reinforced with silicon carbide particles is a type of particle metal matrix composite that has seen applications in the aerospace, ground transportation, and electronics industry. However, the abrasive SiC particles have made this material difficult to machine through conventional machining strategies. This research will focus on using computer aided manufacturing with trochoidal tool paths to maximize machining productivity and extend the tool life of CVD diamond coated end mills. The focus of this research will be on AlSiCp with a high volume fraction of reinforcement (30%) to expand the potential applications of this pMMC. The cutting experiments are divided into three parts: cutting test, confirmation test, and endurance test. Taguchi method will be used to perform an analysis of variance and signal-to-noise ratio to optimize a combination of material removal rate, average cutting forces, and surface roughness. The optimal cutting conditions were found to be 254 mm/min, 30°, and 9500 r/min for MRR+AvgFxy+Ra, 1524 mm/min, 30°, and 9500 r/min for MRR+AvgFxy, and 1524 mm/min, 90°, and 9500 r/min. The cutting conditions for MRR+AvgFx+Ra was not considered for the endurance tests as the machining productivity was too low to be considered a feasible option in the industry. It was concluded that trochoidal milling under wet cutting conditions produced nearly half the tool wear as previous research with conventional milling strategies. However, the longer the CVD diamond coated end mills were engaged in the AlSiCp workpiece, the more dominant the abrasive wear mechanisms appear and cause tool damage. It was concluded that square end mills may not be suitable for machining AlSiCp and that future research should focus on varying the tool geometry or utilizing ball end mills.

Identiferoai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-4127
Date01 January 2018
CreatorsNguyen, Tony
PublisherScholarly Commons
Source SetsUniversity of the Pacific
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of the Pacific Theses and Dissertations

Page generated in 0.002 seconds