Return to search

On the use of demographic models to inform amphibian conservation and management: A case study of the reticulated flatwoods salamander

The Reticulated Flatwoods Salamander, Ambystoma bishopi, is an inhabitant of longleaf pine forests in the southeastern United States. Historically distributed across southern Alabama, Georgia, and the Florida panhandle west of the Apalachicola-Flint Rivers, the range of this species has been drastically reduced. It is currently listed as federally endangered under the Endangered Species Act (ESA). Population viability analyses (PVAs) represent a key component of many recovery plans for threatened and endangered species. Here we use 10 years of mark recapture data collected from two breeding populations of A. bishopi to construct a demographic model that can be used to evaluate future extinction risk. In chapter one, we quantify population sizes through time, and estimate the impact of annual variability in numbers on genetic viability. This species exists in small (< 500) breeding populations and exhibit annual fluctuations in abundance characteristic of pond-breeding amphibians. In chapter 2, we adopt a modified version of the von Bertalanffy equation to construct size-at-age curves for A. bishopi that include the metamorphic transition. Individuals exhibit rapid growth in the larval stage such that they emerge as metamorphs at 60% of their final body size. In chapter 3, we employ a Cormack-Jolly-Seber model, modified to include continuous covariates, to generate size-dependent survival curves. Survival of A bishopi exhibits dramatic annual and seasonal variability, but is always positively correlated with body size. Lastly, in chapter 4, we combine the elements of all previous chapters to construct an Integral Projection Model (IPM). Given the prevalence of complete recruitment failure in these populations, and their relatively small size, extinction probabilities under a business-as-usual model were high. Increasing the frequency of successful recruitment drastically reduces extinction risk; however, adult survival exerts the greatest influence on long-term population growth. To assure the recovery of A. bishopi, management must consider all elements of the life-history when allocating resources and effort. More generally, both aquatic and terrestrial habitats must be protected for amphibian conservation to be effective, making them ideal candidates for 'umbrella species' status. Amphibian conservation would also benefit from an increase in systematic, long-term data collection. / Doctor of Philosophy / The southeastern United States is the global salamander hotspot, representing a crucible for diversity. Longleaf pine forests, the predominant ecosystem in the southeast, have been reduced to 3% of their former range, with dire consequences for the animals that inhabit them. The Reticulated Flatwoods Salamander, Ambystoma bishopi, is endemic to the region, and currently listed as federally endangered owing to recent population declines. A recovery plan for the species therefore, is required by law, under the Endangered Species Act (ESA). A salient component of modern recovery plans are population forecasts that evaluate future extinction risk. Such forecasts can then be used to assess alternative management strategies proposed to improve the species' long-term prospects. By studying two of the last remaining populations of A. bishopi from 2010-2019, we were able to collect the data required to construct a demographic model that can be used to run population projections. In some regards, A. bishopi is a typical amphibian, in that their populations show dramatic fluctuations in numbers through time, and they exhibit rapid growth in the aquatic larval stage, achieving 60% of their maximum body size in the first three months of life. Flatwoods salamanders breed in ephemeral wetlands, that often dry before successful metamorphosis can occur. The frequency of pond-drying results in a high probability of extinction for a single population, but survival of breeding individuals was equally important when considering long-term persistence. To assure the recovery of A. bishopi, management must consider all elements of the life-history when allocating resources and effort. More generally, both aquatic and terrestrial habitats must be protected for amphibian conservation to be effective, making them ideal candidates for 'umbrella species' status.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/98003
Date08 May 2020
CreatorsBrooks, George C.
ContributorsFish and Wildlife Conservation, Haas, Carola A., Jiao, Yan, Gorman, Thomas Andrew, House, Leanna L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds