Return to search

Potential of Ventilation Radiators : Performance evaluation by numerical, analytical and experimental means

Energy consumption for heating and ventilation of buildings is still in 2011considered far too high, but there are many ways to save energy and construct lowenergy buildings that have not been fully utilised. This doctoral thesis has focused onone of these - low temperature heating systems. Particular attention has been given tothe ventilation radiator adapted for exhaust-ventilated buildings because of itspotential as a low energy consuming, easily-operated, environmentally-friendlysystem that might also ensure occupant health and well-being. Investigations were based on Computational Fluid Dynamics (CFD) simulations andanalytical calculations, with laboratory experiments used for validation. Main conclusions: Low and very low temperature heating systems, such as floor heating, in general createan indoor climate with low air speeds and low temperature differences in the room, whichis beneficial for thermal comfort. A typical disadvantage, however, was found to beweakness in counteracting cold down-flow from ventilation air supply units in exhaustventilatedbuildings. with ventilation radiators, unlike most other low temperature systems, it was found thatthe risk of cold draught could be reduced while still maintaining a high ventilation rateeven in cold northern European winters. ventilation radiators were found to be more thermally efficient than traditional radiators. design of ventilation radiators could be further modified for improved thermal efficiency. at an outdoor temperature of -15 °C the most efficient models were able to give doublethe heat output of traditional radiators. Also, by substituting the most efficient ventilationradiators for traditional radiators operating at 55 °C supply water temperature, it wasfound that supply water temperature could be reduced to 35 °C while heat outputremained the same and comfort criteria were met. lowering the supply water temperature by 20 °C (as described above) could givecombined energy savings for heating and ventilation of 14-30 % in a system utilising aheat pump. supply water temperatures as low as 35 °C could increase potential for utilising lowtemperature heat sources such as sun-, ground-, water- or waste-heat. This would beparticularly relevant to new-built “green” energy-efficient buildings, but severaladvantages may apply to retrofit applications as well. Successful application of ventilation radiators requires understanding of relevant buildingfactors, and the appropriate number, positioning and size of radiators for best effect.Evaluation studies must be made at the level of the building as a whole, not just for theheating-ventilation system. This work demonstrated that increased use of well-designed ventilation radiatorarrangements can help to meet regulations issued in 2008 by the Swedish Departmentof Housing (Boverket BBR 16) and goals set in the Energy Performance of BuildingsDirective (EPBD) in the same year. / QC 20110328 / STEM Projektnummer:30326-1 Energieffektiva lågtemperatursystem i byggnader

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-31813
Date January 2011
CreatorsMyhren, Jonn Are
PublisherKTH, Strömnings- och klimatteknik, Stockholm : KTH Royal Institute of Technology
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds