We review the construction of three Smale spaces associated to a unimodular Pisot substitution on d letters: a subshift of finite type (SFT), a substitution tiling space, and a hyperbolic toral automorphism on the Euclidean d-torus. By considering an SFT whose elements are biinfinite, rather than infinite, paths in the graph associated to the substitution, we modify a well-known map to obtain a factor map between our SFT and the hyperbolic toral automorphism on the d-torus given by the incidence matrix of the substitution. We prove that if the tiling substitution forces its border, then this factor map is the composition of an s-resolving factor map from the SFT to a one-dimensional substitution tiling space and a u-resolving factor map from the tiling space to the d-torus.
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/131 |
Date | 11 July 2007 |
Creators | Wieler, Susana |
Contributors | Putnam, Ian |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0021 seconds