Spelling suggestions: "subject:"blueshift off finite type"" "subject:"blueshift oof finite type""
1 |
Symbolic and geometric representations of unimodular Pisot substitutionsWieler, Susana 11 July 2007 (has links)
We review the construction of three Smale spaces associated to a unimodular Pisot substitution on d letters: a subshift of finite type (SFT), a substitution tiling space, and a hyperbolic toral automorphism on the Euclidean d-torus. By considering an SFT whose elements are biinfinite, rather than infinite, paths in the graph associated to the substitution, we modify a well-known map to obtain a factor map between our SFT and the hyperbolic toral automorphism on the d-torus given by the incidence matrix of the substitution. We prove that if the tiling substitution forces its border, then this factor map is the composition of an s-resolving factor map from the SFT to a one-dimensional substitution tiling space and a u-resolving factor map from the tiling space to the d-torus.
|
2 |
Symbolic and geometric representations of unimodular Pisot substitutionsWieler, Susana 11 July 2007 (has links)
We review the construction of three Smale spaces associated to a unimodular Pisot substitution on d letters: a subshift of finite type (SFT), a substitution tiling space, and a hyperbolic toral automorphism on the Euclidean d-torus. By considering an SFT whose elements are biinfinite, rather than infinite, paths in the graph associated to the substitution, we modify a well-known map to obtain a factor map between our SFT and the hyperbolic toral automorphism on the d-torus given by the incidence matrix of the substitution. We prove that if the tiling substitution forces its border, then this factor map is the composition of an s-resolving factor map from the SFT to a one-dimensional substitution tiling space and a u-resolving factor map from the tiling space to the d-torus.
|
3 |
Propriétés quantitative de récurrence en mesure infinie / Quantitative recurrence properties in infinite measureYassine, Nasab 15 November 2018 (has links)
Dans cette thèse, nous étudions les propriétés quantitatives de récurrence de certains systèmes dynamiques préservant une mesure infinie. Nous nous intéressons au premier temps de retour des orbites d'un système dynamique dans un petit voisinage de leurs points de départ. Tout d'abord, nous commençons par considérer un modèle jouet probabilistique pour éclairer la stratégie de nos preuves. On s'intéresse particulièrement au cas où la mesure est infinie, plus précisément, nous considérons les Z -extensions des sous-shift de type fini. Nous étudions le comportement asymptotique du premier temps de retour au voisinage de l'origine, et nous établissons des résultats de type de convergence presque partout, et aussi de convergence en loi par rapport à toute mesure de probabilité absolument continue par rapport à la mesure infinie. Dans ce travail, nous nous également intéressons à d'autres systèmes dynamiques. Nous considérons un flot Axiome A(gt)t sur une variété riemannienne M munie d'une mesure σ -finie μ. Nous supposerons que la mesure μ est une mesure d'équilibre pour (gt)t. Afin d'établir nos résultats, nous introduisons des notions de dynamique hyperbolique. En particulier, nous considérons la section de Markov qui a été introduite par Bowen et Ratner. / In this thesis, we study the quantitative recurrence properties of some dynamical systems preserving an infinite measure. We are interested in the first return time of the orbits of a dynamical system into a small neighborhood of their starting points. First, we start by considering a toy probabilistic model to clarify the strategy of our proofs. Our interest is when the measure is indeed infinite, more precisely we consider the Z-extensions of subshifts of finite type. We study the asymptotic behavior of the first return time near the origin, and we establish results of an almost everywhere convergence kind, and a convergence in distribution with respect to any probability measure absolutely continuous with respect to the infinite measure. In this work, we are also interested in another dynamicals systems. We consider an Axiom A flow (gt)t on a Riemannian manifold M endowed with a σ-finite measure μ. We will assume that the measure μ is an equilibrium measure for (gt)t. In order to establish our results, we introduce notions from hyperbolic dynamics. In particular, we consider the Markov section which was constructed by Bowen and Ratner.
|
4 |
Codage du flot géodésique sur les surfaces hyperboliques de volume finiPit, Vincent 03 December 2010 (has links)
Cette thèse traite de l’étude des objets reliés au codage de Bowen-Series du flot géodésiquepour des surfaces hyperboliques de volume fini. On démontre d’abord que le billard géodésiqueassocié à domaine fondamental even corners d’un groupe fuchsien cofini est conjuguéà une bijection du tore, appelée codage étendu, dont l’un des facteurs est la transformationde Bowen-Series. L’intérêt principal de cette conjugaison est qu’elle ne fait toujours intervenirqu’un nombre fini d’objets. On retrouve ensuite des résultats classiques sur le codage deBowen-Series : il est orbite-équivalent au groupe, ses points périodiques sont denses, et ses orbitespériodiques sont en bijection avec les classes d’équivalence d’hyperboliques primitifs dugroupe ; ce qui permet finalement de relier sa fonction zeta de Ruelle à la fonction zeta de Selberg.Les preuves de ces résultats s’appuient sur un lemme combinatoire qui abstrait la propriétéd’orbite-équivalence à des familles de relations qui peuvent être définies sur tout ensemble surlequel agit le groupe. Il est aussi possible de conjuguer le codage étendu à un sous-shift detype fini, sauf pour un ensemble dénombrable de points. Enfin, on prouve que les distributionspropres pour la valeur propre 1 de l’opérateur de transfert sont les distributions de Helgason defonctions propres du laplacien sur la surface, puis que l’on peut associer à toute telle distributionpropre une fonction propre non triviale de l’opérateur de transfert et que ce procédé admet uninverse dans certains cas. / This thesis focuses on the study of the objects linked to the Bowen-Series coding of the geodesicflow for hyperbolic surfaces of finite volume. It is first proved that the geodesic billiardassociated with an even corners fundamental domain for a cofinite fuchsian group is conjugatedwith a bijection of the torus, called extended coding, one factor of which is the Bowen-Seriestransform. The sharpest property of that conjugacy is that it always only involves a finite numberof objects. Some classical results about the Bowen-Series coding are then rediscovered : itis orbit-equivalent with the group, its periodic points are dense, and its periodic orbits are inbijection with conjugacy classes of primitive hyperbolic isometries ; which eventually links itsRuelle zeta function to the Selberg zeta function. The proofs of those results use a combinatoriallemma that abstracts the orbit-equivalence property to families of relations that can be definedon every set on which the group acts. The extended coding is also proved to be conjugated witha subshift of finite type, except for a countable set of points. Finally, it is shown that eigendistributionsof the transfer operator for the eigenvalue 1 are the Helgason boundary values ofeigenfunction of laplacian on the surface, plus that one can associate to each such eigendistributiona non-trivial eigenfunction of the transfer operator and that this process has a reciprocalin some cases.
|
Page generated in 0.0911 seconds