Spelling suggestions: "subject:"temps dde retour"" "subject:"temps dee retour""
1 |
Teoremas fundamentais para o caminho mais curto entre duas sequências / Théorèmes fondamentaux pour le plus court chemin entre deux sequencesLambert, Rodrigo 17 June 2015 (has links)
Definimos a função caminho mais curto como sendo a mínima quantidade de passos para que uma realização do processo com condição inicial y atinja um conjunto-alvo x. Para tal função, provamos três resultados principais: um teorema de concentração de massa, um princípio de grandes desvios, e uma convergência em distribuição. / Dans ce travail, nous étudions les propriétés de le chemin le plus court entre deux sequences, et en présente trois principaux résultats: Le premier est le comportement asymptotique de le chemin le plus court comme une fonction linéaire de la taille de les cylindres. Le deuxième est un principe de grandes déviations pour cette quantitée. Et le troisième est de la convergence en distribution d\'une version re-mise à l\'échelle de cette variable aleatorie.
|
2 |
Etude de convergences de séries aléatoires échantillonnées, mesures de Markov quasi-Bernoulli ou quasi-Bernoulli faible et temps de retour uniforme dans les systèmes exponentiellement mélangeantsLanglet, Thomas 15 October 2009 (has links) (PDF)
Dans la première partie de cette thèse, on s'intéresse à la convergence de certaines séries aléatoires. On détermine des conditions suffisantes sur la suite $(a_k)_{k\geq 1}$ et sur les variables aléatoires indépendantes $(X_k)_{k\geq 1}$, afin que pour presque tout $\omega\in\Omega$, on ait la convergence uniforme ou pour presque tout $x$ de la série $\sum_{k\geq 1}a_k f(x\cdot(X_1+\cdots+X_k)(\omega))$ pour une certaine classe de fonctions $f$. On trouve, aussi, des conditions suffisantes sur la suite $(a_k)_{k\geq 1}$ et sur les variables aléatoires indépendantes $(X_k)_{k\geq 1}$, afin que pour presque tout $\omega\in\Omega$, on ait la convergence dans $L^2(\mu)$ ou $\mu$-presque partout de la série $\sum_{k\geq 1}a_k T^{(X_1+\cdots+X_k)(\omega)}(g)(x)$ pour certaines classes de fonctions $g\in L^2(\mu)$ et de flot $\{T^{t},t\in G\}$ d'opérateurs de $L^2(\mu)$ dans $L^2(\mu)$ (où $G$ est un semi-groupe de $\mathbb{R}$). La deuxième partie porte sur des propriétés de mesures : quasi-Bernoulli et quasi-Bernoulli faible. On trouve notamment des conditions nécessaires et suffisantes pour qu'une mesure de Markov inhomogène soit quasi-Bernoulli ou quasi-Bernoulli faible. On caractèrise à l'aide de ces conditions les mesures de Bernoulli qui sont quasi-Bernoulli ou quasi-Bernoulli faible. On prouve que si une mesure de Bernoulli n'ayant que des probabilités non nulles est quasi-Bernoulli faible alors elle est quasi-Bernoulli. La dernière partie est consacrée à l'étude du problème du temps de retour uniforme dans les systèmes exponentiellement mélangeant. Il s'agit d'avoir un recouvrement aléatoire de l'espace engendré par un processus exponentiellement mélangeant. Etant donné un recouvrement aléatoire, on obtient une estimation du nombre de recouvrements en fonction de la dimension maximale locale de la mesure
|
3 |
Propriétés quantitative de récurrence en mesure infinie / Quantitative recurrence properties in infinite measureYassine, Nasab 15 November 2018 (has links)
Dans cette thèse, nous étudions les propriétés quantitatives de récurrence de certains systèmes dynamiques préservant une mesure infinie. Nous nous intéressons au premier temps de retour des orbites d'un système dynamique dans un petit voisinage de leurs points de départ. Tout d'abord, nous commençons par considérer un modèle jouet probabilistique pour éclairer la stratégie de nos preuves. On s'intéresse particulièrement au cas où la mesure est infinie, plus précisément, nous considérons les Z -extensions des sous-shift de type fini. Nous étudions le comportement asymptotique du premier temps de retour au voisinage de l'origine, et nous établissons des résultats de type de convergence presque partout, et aussi de convergence en loi par rapport à toute mesure de probabilité absolument continue par rapport à la mesure infinie. Dans ce travail, nous nous également intéressons à d'autres systèmes dynamiques. Nous considérons un flot Axiome A(gt)t sur une variété riemannienne M munie d'une mesure σ -finie μ. Nous supposerons que la mesure μ est une mesure d'équilibre pour (gt)t. Afin d'établir nos résultats, nous introduisons des notions de dynamique hyperbolique. En particulier, nous considérons la section de Markov qui a été introduite par Bowen et Ratner. / In this thesis, we study the quantitative recurrence properties of some dynamical systems preserving an infinite measure. We are interested in the first return time of the orbits of a dynamical system into a small neighborhood of their starting points. First, we start by considering a toy probabilistic model to clarify the strategy of our proofs. Our interest is when the measure is indeed infinite, more precisely we consider the Z-extensions of subshifts of finite type. We study the asymptotic behavior of the first return time near the origin, and we establish results of an almost everywhere convergence kind, and a convergence in distribution with respect to any probability measure absolutely continuous with respect to the infinite measure. In this work, we are also interested in another dynamicals systems. We consider an Axiom A flow (gt)t on a Riemannian manifold M endowed with a σ-finite measure μ. We will assume that the measure μ is an equilibrium measure for (gt)t. In order to establish our results, we introduce notions from hyperbolic dynamics. In particular, we consider the Markov section which was constructed by Bowen and Ratner.
|
Page generated in 0.0756 seconds