Return to search

Thermodynamics of porous media: non-linear flow processes

Numerical modelling of subsurface processes, such as geotechnical, geohydrological or geothermal applications requires a realistic description of fluid parameters in order to obtain plausible results. Particularly for gases, the properties of a fluid strongly depend on the primary variables of the simulated systems, which lead to non-linerarities in the governing equations. This thesis describes the development, evaluation and application of a numerical model for non-isothermal flow processes based on thermodynamic principles. Governing and constitutive equations of this model have been implemented into the open-source scientific FEM simulator OpenGeoSys. The model has been verified by several well-known benchmark tests for heat transport as well as for single- and multiphase flow.

To describe physical fluid behaviour, highly accurate thermophysical property correlations of various fluids and fluid mixtures have been utilized. These correlations are functions of density and temperature. Thus, the accuracy of those correlations is strongly depending on the precision of the chosen equation of state (EOS), which provides a relation between the system state variables pressure, temperature, and composition. Complex multi-parameter EOSs reach a higher level of accuracy than general cubic equations, but lead to very expansive computing times. Therefore, a sensitivity analysis has been conducted to investigate the effects of EOS uncertainties on numerical simulation results. The comparison shows, that small differences in the density function may lead to significant discrepancies in the simulation results.

Applying a compromise between precision and computational effort, a cubic EOS has been chosen for the simulation of the continuous injection of carbon dioxide into a depleted natural gas reservoir. In this simulation, real fluid behaviour has been considered. Interpreting the simulation results allows prognoses of CO2 propagation velocities and its distribution within the reservoir. These results are helpful and necessary for scheduling real injection strategies. / Für die numerische Modellierung von unterirdischen Prozessen, wie z. B. geotechnische, geohydrologische oder geothermische Anwendungen, ist eine möglichst genaue Beschreibung der Parameter der beteiligten Fluide notwendig, um plausible Ergebnisse zu erhalten. Fluideigenschaften, vor allem die Eigenschaften von Gasen, sind stark abhängig von den jeweiligen Primärvariablen der simulierten Prozesse. Dies führt zu Nicht-linearitäten in den prozessbeschreibenden partiellen Differentialgleichungen.

In der vorliegenden Arbeit wird die Entwicklung, die Evaluierung und die Anwendung eines numerischen Modells für nicht-isotherme Strömungsprozesse in porösen Medien beschrieben, das auf thermodynamischen Grundlagen beruht. Strömungs-, Transport- und Materialgleichungen wurden in die open-source-Software-Plattform OpenGeoSys implementiert. Das entwickelte Modell wurde mittels verschiedener, namhafter Benchmark-Tests für Wärmetransport sowie für Ein- und Mehrphasenströmung verifiziert.

Um physikalisches Fluidverhalten zu beschreiben, wurden hochgenaue Korrelationsfunktionen für mehrere relevante Fluide und deren Gemische verwendet. Diese Korrelationen sind Funktionen der Dichte und der Temperatur. Daher ist deren Genauigkeit von der Präzision der verwendeten Zustandsgleichungen abhängig, welche die Fluiddichte in Relation zu Druck- und Temperaturbedingungen sowie der Zusammensetzung von Gemischen beschreiben.

Komplexe Zustandsgleichungen, die mittels einer Vielzahl von Parametern an Realgasverhalten angepasst wurden, erreichen ein viel höheres Maß an Genauigkeit als die einfacheren, kubischen Gleichungen. Andererseits führt deren Komplexität zu sehr langen Rechenzeiten. Um die Wahl einer geeigneten Zustandsgleichung zu vereinfachen, wurde eine Sensitivitätsanalyse durchgeführt, um die Auswirkungen von Unsicherheiten in der Dichtefunktion auf die numerischen Simulationsergebnisse zu untersuchen. Die Analyse ergibt, dass bereits kleine Unterschiede in der Zustandsgleichung zu erheblichen Abweichungen der Simulationsergebnisse untereinander führen können.

Als ein Kompromiss zwischen Einfachheit und Rechenaufwand wurde für die Simulation einer enhanced gas recovery-Anwendung eine kubische Zustandsgleichung gewählt. Die Simulation sieht, unter Berücksichtigung des Realgasverhaltens, die kontinuierliche Injektion von CO2 in ein nahezu erschöpftes Erdgasreservoir vor. Die Interpretation der Ergebnisse erlaubt eine Prognose über die Ausbreitungsgeschwindigkeit des CO2 bzw. über dessen Verteilung im Reservoir. Diese Ergebnisse sind für die Planung von realen Injektionsanwendungen notwendig

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:27749
Date30 April 2013
CreatorsBöttcher, Norbert
ContributorsLiedl, Rudolf, Kolditz, Olaf, Graf, Thomas, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds