Return to search

DNA Oligomers - From Protein Binding to Probabilistic Modelling

This dissertation focuses on rationalised DNA design as a tool for the discovery and development of new therapeutic entities, as well as understanding the biological function of DNA beyond the storage of genetic information. The study is comprised of two main areas of study: (i) the use of DNA as a coding unit to illustrate the relationship between code-diversity and dynamics of self-assembly; and (ii) the use of DNA as an active unit that interacts and regulates a target protein.

In the study of DNA as a coding unit in code-diversity and dynamics of self-assembly, we developed the DNA-Based Diversity Modelling and Analysis (DDMA) method. Using Polymerase Chain Reaction (PCR) and Real Time Polymerase Chain Reaction (RT-PCR), we studied the diversity and evolution of synthetic oligonucleotide populations. The manipulation of critical conditions, with monitoring and interpretation of their effects, lead to understanding how PCR amplification unfolding could reshape a population. This new take on an old technology has great value for the study of: (a) code-diversity, convenient in a DNA-based selection method, so semi-quantitation can evaluate a selection development and the population\'s behaviour can indicate the quality; (b) self-assembly dynamics, for the simulation of a real evolution, emulating a society where selective pressures direct the population's adaptation; and (c) development of high-entropy DNA structures, in order to understand how similar unspecific DNA structures are formed in certain pathologies, such as in auto-immune diseases.

To explore DNA as an active unit in Tumour Necrosis Factor α (TNF-α) interaction and activity modulation, we investigate DNA's influence on its spatial conformation by physical environment regulation. Active TNF-α is a trimer and the protein-protein interactions between its monomers are a promising target for drug development. It has been hypothesised that TNF-α forms a very intricate network after its activation between its subunits and receptors, but the mechanism is still not completely clear. During our research, we estimate the non-specific DNA binding to TNF-α in the low micro-molar range. Cell toxicity assays confirm this interaction, where DNA consistently enhances TNF-α's cytotoxic effect. Further binding and structural studies lead to the same conclusion that DNA binds and interferes with TNF-α structure. From this protein-DNA interaction study, a new set of tools to regulate TNF-α's biological activity can be developed and its own biology can be unveiled.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-218709
Date09 February 2017
CreatorsAndrade, Helena
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Yixin Zhang, Prof. Dr. Yixin Zhang, Prof. Dr. Carsten Werner
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0027 seconds