• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DNA Oligomers - From Protein Binding to Probabilistic Modelling

Andrade, Helena 09 February 2017 (has links) (PDF)
This dissertation focuses on rationalised DNA design as a tool for the discovery and development of new therapeutic entities, as well as understanding the biological function of DNA beyond the storage of genetic information. The study is comprised of two main areas of study: (i) the use of DNA as a coding unit to illustrate the relationship between code-diversity and dynamics of self-assembly; and (ii) the use of DNA as an active unit that interacts and regulates a target protein. In the study of DNA as a coding unit in code-diversity and dynamics of self-assembly, we developed the DNA-Based Diversity Modelling and Analysis (DDMA) method. Using Polymerase Chain Reaction (PCR) and Real Time Polymerase Chain Reaction (RT-PCR), we studied the diversity and evolution of synthetic oligonucleotide populations. The manipulation of critical conditions, with monitoring and interpretation of their effects, lead to understanding how PCR amplification unfolding could reshape a population. This new take on an old technology has great value for the study of: (a) code-diversity, convenient in a DNA-based selection method, so semi-quantitation can evaluate a selection development and the population\'s behaviour can indicate the quality; (b) self-assembly dynamics, for the simulation of a real evolution, emulating a society where selective pressures direct the population's adaptation; and (c) development of high-entropy DNA structures, in order to understand how similar unspecific DNA structures are formed in certain pathologies, such as in auto-immune diseases. To explore DNA as an active unit in Tumour Necrosis Factor α (TNF-α) interaction and activity modulation, we investigate DNA's influence on its spatial conformation by physical environment regulation. Active TNF-α is a trimer and the protein-protein interactions between its monomers are a promising target for drug development. It has been hypothesised that TNF-α forms a very intricate network after its activation between its subunits and receptors, but the mechanism is still not completely clear. During our research, we estimate the non-specific DNA binding to TNF-α in the low micro-molar range. Cell toxicity assays confirm this interaction, where DNA consistently enhances TNF-α's cytotoxic effect. Further binding and structural studies lead to the same conclusion that DNA binds and interferes with TNF-α structure. From this protein-DNA interaction study, a new set of tools to regulate TNF-α's biological activity can be developed and its own biology can be unveiled.
2

Design, Synthesis and Analysis of Self-Assembling Triangulated Wireframe DNA Structures

Matthies, Michael 18 November 2019 (has links)
The field of DNA nanotechnology offers a wide range of design strategies with which nanometer-sized structures with a desired shape, size and aspect ratio can be built. The most established techniques in the field rely on close-packed 'solid' DNA nanostructures produced with either the DNA origami or the single-stranded tile techniques. These structures depend on high-salt buffer solutions and require more material than comparable size hollow wireframe structures. This dissertation explores the construction of hollow wireframe DNA nanostructures composed of equilateral triangles. To achieve maximal material efficiency the design is restricted to use a single DNA double helix per triangle edge. As a proof of principle, the DNA origami technique is extended to produce a series of truss structures including the flat, tetrahedral, octahedral, or irregular dodecahedral truss designs. In contrast to close packed DNA origami designs these structures fold at low-salt buffer conditions. These structures have defined cavities that may in the future be used to precisely position functional elements such as metallic nanoparticles or enzymes. The design process of these structures is simplified by a custom design software. Next, the triangulated construction motif is extended to the single-stranded DNA tile technique. A collection of finite structures, as well as one-dimensional crystalline assemblies is explored. The ideal assembly conditions are determined experimentally and using molecular dynamics simulations. A custom design software is presented to simplify the design and handling of these structures. At last, the cost-effective prototyping of triangulated wireframe DNA origami structures is explored. This is achieved through the introduction of single-stranded “gap” regions along the triangle edges. These gap regions are then filled using a DNA polymerase rather than by synthetic oligonucleotides. This technique also allows the mechanical transformation of these structures, which is exemplified by the transition of a bent into a straight structure upon completion of the gap filling.:Abstract v Publications vii Acknowledgements ix Contents xi Chapter 1 A short introduction into DNA nanotechnology 1 1.1 Nanotechnology 1 1.1.1 Top down 1 1.1.2 Bottom up 3 1.2 Deoxyribonucleic acid (DNA) 4 1.3 DNA Nanotechnology 6 1.3.1 Tile based assembly 9 1.3.2 DNA origami and single-stranded tiles 10 1.3.3 Some applications of DNA nanotechnology 12 1.3.4 Wireframe structures 15 1.3.5 Computational tools and DNA nanotechnology. 17 Chapter 2 Motivation and objectives 19 Chapter 3 Design and Synthesis of Triangulated DNA Origami Trusses 20 3.1 Introduction 20 3.2 Results and Discussion 21 3.2.1 Design 21 3.2.2 Nomenclature and parameters of the tube structures 23 3.2.3 Gel electrophoreses analysis 25 3.2.4 Imaging of the purified structures 26 3.2.5 Optimizing the folding conditions 28 3.2.6 Comparison to vHelix 29 3.3 Conclusions 29 3.4 Methods 30 3.4.1 Standard DNA origami assembly reaction. 30 3.4.2 Gel purification. 30 3.4.3 AFM sample preparation. 31 3.4.4 TEM sample preparation. 31 3.4.5 Instructions for mixing the staple sets. 31 Chapter 4 Triangulated wireframe structures assembled using single-stranded DNA tiles 33 4.1 Introduction 33 4.2 Results and Discussion 35 4.2.1 Designing the structures 35 4.2.2 Synthesis of test structures 37 4.2.3 Molecular dynamics simulations of 6-arm junctions 38 4.2.4 Assembly of the finite structures 40 4.2.5 Influence of salt concentration and folding times 42 4.2.6 Molecular dynamics simulations of the rhombus structure 43 4.2.7 1D SST crystals 44 4.2.8 Controlling the crystal growth 46 4.3 Conclusions 48 4.4 Methods 49 4.4.1 SST Folding 49 4.4.2 Agarose Gel Electrophoresis 49 4.4.3 tSEM Characterization 49 4.4.4 AFM Imaging 49 4.4.5 AGE-Based Folding-Yield Estimation 49 4.4.6 Molecular Dynamics Simulations 50 Chapter 5 Structural transformation of wireframe DNA origami via DNA polymerase assisted gap-filling 52 5.1 Introduction 52 5.2 Results and Discussion 54 5.2.1 Design of the Structures 54 5.2.2 Folding of Gap-Structures 56 5.2.3 Inactivation of Polymerase. 57 5.2.4 Secondary Structures. 58 5.2.5 Folding Kinetics of Gap Origami. 60 5.3 Conclusions 61 5.4 Methods 62 5.4.1 DNA origami folding 62 5.4.2 Gap filling of the wireframe DNA origami structures 63 5.4.3 Agarose gel electrophoresis 63 5.4.4 PAGE gel analysis 63 5.4.5 tSEM characterization 64 5.4.6 AFM imaging 64 5.4.7 AGE based folding-yield estimation 64 5.4.8 Gibbs free energy simulation using mfold 65 5.4.9 List of sequence for folding the DNA origami triangulated structures 65 Chapter 6 Summary and outlook 67 Appendix 69 A.1 Additional figures from chapter 369 A.2 Additional figures from chapter 4 77 A.3 Additional figures from chapter 5 111 Bibliography 127 Erklärung 138
3

Generierung und Charakterisierung von Proteinderivaten zur gezielten Mineralisierung von DNA-Konstrukten

Gehlhar, Maria 14 June 2021 (has links)
Die Besonderheit der DNA-Nanotechnologie liegt in der Verwendung von DNA als Konstruktionsmaterial für die Herstellung von artifiziellen Strukturen im Nanometermaßstab (Seeman, 1982; Winfree et al., 1998). Diese DNA-Nanoobjekte, wie beispielsweise DNA-Nanoröhren, offerieren innovative und vielversprechende Anwendungsmöglichkeiten in verschiedenen Bereichen wie der Elektronik oder Medizin. Eine Herausforderung für die dauerhafte Verwendung von DNA-Nanoröhren stellt deren Stabilität dar. Einflussfaktoren wie die DNA-Nukleaseaktivitäten, die Ionenstärke und hohe Temperaturen können dabei eine langfristige Anwendung limitieren. Als ein Lösungsansatz für die Erhöhung der Beständigkeit wird eine gezielte Mineralisierung der DNA-Nanoröhren durch spezifische Fusionsproteine angestrebt. Ziel dieser Arbeit ist die dafür notwendige Herstellung und Charakterisierung der DNA-bindenden Fusionsproteine mit Mineralisierungsdomänen vorzustellen. Das umfasst das Auswählen geeigneter DNA-Bindungsproteine als Bestandteil der Fusionsproteine. In dieser Arbeit wurden die DNA-Bindungsproteine MutH und SBB aus Escherichia coli (E. coli) sowie Yku70p aus Saccharomyces cerevisiae (S. cerevisiae) aufgrund ihrer spezifischen Bindungseigenschaften dafür identifiziert. Damit können die Fusionsproteine sequenzspezifische oder -unspezifische Bindungen mit doppelsträngiger (engl. double stranded DNA, dsDNA) oder einzelsträngiger DNA (engl. single stranded DNA, ssDNA) eingehen. Es ist mittels Klonierung gelungen, verschiedene Fusionskonstrukte mit den genannten DNA-Bindungsproteinen zu generieren. Diese beinhalten ebenfalls das enhanced green fluorescent protein sowie den His6-Tag für den Expressionsnachweis und die Proteinreinigung. Weitere Varianten der Fusionskonstrukte bestehen zusätzlich aus der tobacco etch virus-Protease-Erkennungssequenz zur Entfernung des His6-Tags und der Domänen R5-Peptid (R5P) oder Poly-L-Arginin (PLR) für die Mineralisierung. Bestandteil dieser Arbeit sind Western-Blot-Analysen und mikroskopische Aufnahmen, welche die erfolgreiche heterologe Expression aller Fusionskonstrukte nachweisen. Aus den Ergebnissen der Expressions- und Löslichkeitsanalysen lässt sich schlussfolgern, dass insbesondere das Expressionslevel und die Synthese löslicher Proteine mit den Mineralisierungsdomänen eine Herausforderung darstellen. Ebenfalls in dieser Arbeit sind Versuche zur Optimierung mit verschiedenen Expressionsstämmen (E. coli und S. cerevisiae) und Expressionsparametern (Temperatur und Induktor-Konzentration) enthalten. Den Ergebnissen nach eignen sich besonders die Fusionsproteine MutH-EGFP-His6 und SSB-EGFP-His6 für die weiteren Experimente. Die Untersuchungen der DNA-Bindungseigenschaften erfolgten mittels Electrophoretic mobility shift assay (EMSA) und Rasterkraftmikroskopie (engl. atomic force microscopy, AFM). Diese Methoden mussten für jedes Fusionsprotein zuvor etabliert und optimiert werden. Zu Beginn stand das MutH-Fusionsprotein im Focus, wobei die durchgeführten EMSA-Untersuchungen die Spezifität zur GATC-Erkennungssequenz sowie zur dsDNA betrachteten. Die Charakterisierung mittels AFM diente als weitere Möglichkeit zur Analyse der DNA-Bindungseigenschaften. Zusätzlich kam in dieser Arbeit eine Variante des CRISPR/Cas9-Systems als Fusionsprotein für eine sequenzspezifische Adressierung von dsDNA zum Einsatz. Die EMSA- und AFM-Analysen deuteten dabei auf eine Interaktion von dem dCas9-Fusionsproteins und dsDNA hin. Weiterhin war das SSB-Fusionsprotein Bestandteil der Untersuchungen. Die Bindungsanalysen mittels EMSA zeigten, dass es bevorzugt mit ssDNA interagiert und nur eine geringe Affinität zu dsDNA vorliegt. Die Bindung zu ssDNA konnte ebenfalls erfolgreich anhand von AFM-Untersuchungen gezeigt werden. Zusammenfassend bestätigen die Ergebnisse die Funktionalität des MutH- und SSB-Fusionsproteins. Es konnten zudem erste Hinweise erbracht werden, die eine spezifische Bindung der Fusionsproteine an dsDNA oder ssDNA belegen. Mit dieser Arbeit ist es gelungen, Proteinderivate zu generieren und charakterisieren, wodurch eine entscheidende Grundlage für die gezielte Mineralisierung von DNA-Konstrukten geschaffen wurde.
4

Block copolymer micellization, and DNA polymerase-assisted structural transformation of DNA origami nanostructures

Agarwal, Nayan Pawan 14 August 2019 (has links)
DNA Nanotechnology allows the synthesis of nanometer sized objects that can be site specifically functionalized with a large variety of materials. However, many DNA structures need a higher ionic strength than that in common cell culture buffers or in bodily fluids to maintain their integrity and can be degraded quickly by nucleases. The aim of this dissertation was to overcome this deficiency with the help of cationic PEG-poly-lysine block copolymers that can electrostatically cover the DNA nanostructures to form “DNA origami polyplex micelles” (DOPMs). This straightforward, cost-effective and robust route to protect DNA-based structures could therefore enable applications in biology and nanomedicine, where un-protected DNA origami would be degraded. Moreover, owing to high polarity, the DNA-based structures are restricted to the aque-ous solution based buffers only. Any attempt to change the favorable conditions, leads to the distortion of the structures. In this work it was demonstrated that, by using the polyplex micellization strategy, the organic solubility of DNA origami structures can be improved. The strategy was also extended to functional ligands that are otherwise not soluble in organic solvents. With this strategy, it is now also possible to perform organic solution reactions on the DNA-based structures, opening up the possibility to use hydro-phobic organic reagents to synthesize novel materials. The polyplex micellization strategy therefore presents a cheap, robust, modular, reversible and versatile method to not only solubilize DNA structures in organic solvents but also improve their stability in biological environments. A third project was based on the possibility to synthesize complementary sequences to single-stranded gap regions in the DNA origami scaffold cost-effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. The introduction of flexible gap regions resulted in fully collapsed or partially bent structures due to entropic spring effects. These structures were also used to demonstrate structural transformations with the help of DNA polymerases, expanding the collapsed bent structures to straightened tubes. This approach presents a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified or mechanically switched.:Abstract v Publications vii Acknowledgements ix Contents xiii Chapter 1 Introduction 1 1.1 Nanotechnology 1 1.1.1 History of nanotechnology 1 1.1.2 Phenomena that occur at nanoscale 4 1.1.3 Nature’s perspective of nanotechnology 4 1.1.4 Manufacturing nanomaterials 6 1.2 Deoxyribonucleic acid (DNA) 8 1.2.1 DNA, the genetic material, “The secret of life” 8 1.2.2 Structure of DNA 9 1.2.3 DNA synthesis 15 1.2.4 Stability of DNA 18 1.3 DNA nanotechnology 20 1.3.1 Historical development 20 1.3.2 DNA tile motifs 21 1.3.3 Directed nucleation assembly and algorithmic assembly 23 1.3.4 Scaffolded DNA origami and single-stranded DNA tiles 25 1.3.5 Expanding the design space offered by DNA 27 1.3.6 Assembling heterogeneous materials with DNA 30 1.3.7 Functional devices built using DNA nanostructures 35 Chapter 2 Motivation and objectives 40 Chapter 3 Block copolymer micellization as a protection strategy for DNA origami 42 3.1 Introduction 42 3.1.1 Cellular delivery of DNA nanostructures 42 3.1.2 The need for stability of DNA nanostructures 43 3.1.3 Non-viral gene therapy 44 3.2 Results and discussions 46 3.2.1 Strategy to form DNA origami polyplex micelles (DOPMs) 46 3.2.2 Optimizations 46 3.2.3 Decomplexation 53 3.2.4 Stability tests 55 3.2.5 Short PEG-PLys block copolymer 58 3.2.6 Compatibility with bulky ligands 59 3.2.7 Accessibility of handles on DOPMs 63 3.3 Conclusion 64 3.4 Outlook and state of the art 65 3.5 Methods 67 3.5.1 DNA origami folding 67 3.5.2 Preparation of ssDNA functionalized AuNPs 68 3.5.3 Agarose gel electrophoresis 69 3.5.4 Block copolymer preparation 70 3.5.5 DNA origami polyplex micelle preparation 70 3.5.6 Decomplexation of DOPM using dextran sulfate 73 3.5.7 Stability tests 74 3.5.8 tSEM characterization 75 3.5.9 AFM imaging 76 Chapter 4 Improving organic solubility and stability of DNA origami using polyplex micellization 77 4.1 Introduction 77 4.2 Results and discussions 79 4.2.1 Strategy for organic solubility of DNA origami 79 4.2.2 Proof of concept using AuNPs functionalized with ssDNA 80 4.2.3 Extending the strategy to DNA origami 82 4.2.4 Optimizations 86 4.2.5 Compatibility with functional ligands 88 4.2.6 Functionalization of DNA origami in organic solvent 94 4.3 Conclusion and outlook 95 4.4 Methods 97 4.4.1 Conjugation of functional ligands to DNA origami 97 4.4.2 Organic solubility 98 4.4.3 Reactions in organic solution on DOPMs 99 4.4.4 Fluorescence imaging using gel scanner 100 Chapter 5 Structural transformation of wireframe DNA origami via DNA polymerase assisted gap-filling 101 5.1 Introduction 101 5.2 Results and discussion 102 5.2.1 Design of the structures 102 5.2.2 Folding of gap-structures 105 5.2.3 Single-stranded DNA binding proteins 107 5.2.4 Gap filling with different polymerases 109 5.2.5 Gap filling with Phusion high-fidelity DNA polymerase 111 5.2.6 Optimization of the extension reaction using T4 DNA polymerase 115 5.2.7 Secondary structures 121 5.2.8 Folding kinetics of gap origami 124 5.2.9 Bending of tubes 125 5.3 Conclusion 126 5.4 Outlook 127 5.5 Methods 128 5.5.1 DNA origami folding 128 5.5.2 Gap filling of the wireframe DNA origami structures 128 5.5.3 Agarose gel electrophoresis 130 5.5.4 PAGE gel analysis 130 5.5.5 tSEM characterization 131 5.5.6 AFM imaging 131 5.5.7 AGE based folding-yield estimation 132 5.5.8 Gibbs free energy simulation using mfold 132 5.5.9 Staple list for folding the DNA origami triangulated structures 132 Appendix 134 A.1 Additional figures from chapter 3 134 A.2 Additional figures from chapter 4 137 A.3 Additional figures from chapter 5 149 Bibliography 155 Erklärung 171
5

Investigation of Cooperativity between Statistical Rebinding and the Chelate Effect on DNA Scaffolded Multivalent Binders as a Method for Developing High Avidity Ligands to target the C-type Lectin Langerin

Bachem, Gunnar 29 April 2021 (has links)
Aufgrund der Fähigkeit von Langerhans Zellen, welche den C-Typ Lektin (CTL) Rezeptor Langerin exprimieren, Antigene zu internalisieren und T-Zellen zu präsentieren, wurde Langerin als attraktives Ziel für neue Immunotherapien erkannt. Langerin kann Pathogene wie z.B. Viren erkennen, die zur Erhöhung der Avidität Kohlenhydratliganden multivalent präsentieren, da die monovalenten Kohlenhydratliganden nur niedrige Affinitäten für Langerin aufweisen. Die natürlichen monovalenten Kohlenhydratliganden besitzen nur niedrige Affinitäten für Langerin. Inspiriert durch die Natur stellt Multivalenz eine Strategie zur Überwindung der schwachen CTL-Kohlenhydrat-Wechselwirkung dar. Im Gegensatz zur hochmultivalenten Präsentation von Liganden mit undefinierter Anordnung hat sich diese Arbeit zum Ziel gesetzt auch die Ökonomie der Liganden zu optimieren, indem Liganden auf einer DNA Gerüststruktur so präsentiert wurden, dass sie die Distanz zwischen den Bindungstaschen des Homotrimers Langerin wiederspiegeln. Eine Untersuchung der relevanten multivalenten Bindungsmechanismen führte zu einer Anordnung der Liganden, die sowohl statistisches Rebinding als auch den Chelate Effekt einbezog. Der Rebinding Effekt wurde als Mittel erkannt, dass nicht nur die Avidität des Liganden an einer Bindungstasche erhöht, sondern auch ausgenutzt werden kann, um den Chelate Effekt zu amplifizieren. Diese Methode stellt eine Möglichkeit dar niedrige oder nicht vorhandene Multivalenzeffekte bei der bivalenten Präsentation von Liganden zu überwinden, wenn hochaffine Liganden nicht zur Verfügung stehen. Eine Kombination dieser Strategie mit der Entwicklung eines neuen selektiven Liganden für Langerin führte zu dem stärksten bekannten Langerinbinder (IC50 = 300 nM). Die Ligand-PNA-DNA Konstrukte wurden selektiv von Langerin exprimierenden Zellen bei nanomolaren Konzentrationen internalisiert und stellen ein System dar, welches in Zukunft für den Transport von Beladungen Anwendung finden könnte. / Targeting the C-type lectin (CTL) langerin has received increasing attention as a novel immunotherapy strategy due to the capacity of Langerhans cells, which express langerin, to endocytose and cross-present antigens to T-cells. Langerin recognizes pathogens such as viruses, which present carbohydrates in a multivalent fashion to increase avidity as the monovalent carbohydrate ligands only display low affinity for langerin. Inspired by nature, multivalency has therefore been a key tool for overcoming the low affinities of CTL-carbohydrate interactions. In contrast to highly multivalent ligand presentation with undefined arrangements this work strove to optimize ligand economy by designing bivalent ligands that take the distance between the binding sites of the homotrimeric langerin into consideration by precise arrangement of ligands on DNA-based scaffolds. Studying the multivalent mechanisms at work led us to the design of ligands that take both statistical rebinding and the chelate effect into account. The rebinding effect was recognized as a tool that not only increases ligand avidity at a single binding site but in addition can be exploited to amplify the chelate effect. This method provides a solution for overcoming the low or non-existing multivalency effects when bivalently presenting low affinity ligands on a rigid scaffold if high affinity ligands are unavailable. A combination of this arrangement strategy with the development of a first langerin selective glycomimetic ligand led to the most potent molecularly defined langerin binder to date (IC50 = 300 nM). The ligand-PNA-DNA constructs were selectively internalized by langerin expressing cells at nanomolar concentrations and constitute a delivery platform for the future transport of cargo to Langerhans cells.
6

DNA Oligomers - From Protein Binding to Probabilistic Modelling

Andrade, Helena 26 January 2017 (has links)
This dissertation focuses on rationalised DNA design as a tool for the discovery and development of new therapeutic entities, as well as understanding the biological function of DNA beyond the storage of genetic information. The study is comprised of two main areas of study: (i) the use of DNA as a coding unit to illustrate the relationship between code-diversity and dynamics of self-assembly; and (ii) the use of DNA as an active unit that interacts and regulates a target protein. In the study of DNA as a coding unit in code-diversity and dynamics of self-assembly, we developed the DNA-Based Diversity Modelling and Analysis (DDMA) method. Using Polymerase Chain Reaction (PCR) and Real Time Polymerase Chain Reaction (RT-PCR), we studied the diversity and evolution of synthetic oligonucleotide populations. The manipulation of critical conditions, with monitoring and interpretation of their effects, lead to understanding how PCR amplification unfolding could reshape a population. This new take on an old technology has great value for the study of: (a) code-diversity, convenient in a DNA-based selection method, so semi-quantitation can evaluate a selection development and the population\'s behaviour can indicate the quality; (b) self-assembly dynamics, for the simulation of a real evolution, emulating a society where selective pressures direct the population's adaptation; and (c) development of high-entropy DNA structures, in order to understand how similar unspecific DNA structures are formed in certain pathologies, such as in auto-immune diseases. To explore DNA as an active unit in Tumour Necrosis Factor α (TNF-α) interaction and activity modulation, we investigate DNA's influence on its spatial conformation by physical environment regulation. Active TNF-α is a trimer and the protein-protein interactions between its monomers are a promising target for drug development. It has been hypothesised that TNF-α forms a very intricate network after its activation between its subunits and receptors, but the mechanism is still not completely clear. During our research, we estimate the non-specific DNA binding to TNF-α in the low micro-molar range. Cell toxicity assays confirm this interaction, where DNA consistently enhances TNF-α's cytotoxic effect. Further binding and structural studies lead to the same conclusion that DNA binds and interferes with TNF-α structure. From this protein-DNA interaction study, a new set of tools to regulate TNF-α's biological activity can be developed and its own biology can be unveiled.
7

Coiled-Coil-Templated Acyl Transfer Reactions on the Surface of Living Cells

Gavins, Georgina 24 April 2023 (has links)
Fluoreszenzmarkierungstechniken für lebende Zellen ermöglichen es Biologen, einen Blick in eine komplexe biologische Umgebung zu werfen und Informationen über ein bestimmtes Ziel in einer nahezu natürlichen Umgebung zu erhalten. Dank der konzertierten Bemühungen der wissenschaftlichen Gemeinschaft gibt es eine Fülle von kommerziell erhältlichen, genetisch kodierbaren Markern und Reportern für die Fluoreszenzmikroskopie. Allerdings gibt es nur wenige Lebendzellmethoden, die eine direkte Konjugation von Nukleinsäuren mit Proteinen erlauben, obwohl es robuste DNA-Technologien gibt, die mit Oligo-Antikörper-Konjugaten auf Zelloberflächen durchgeführt werden. Ein weiterer, oft einschränkender Aspekt der Markierung ist die Fähigkeit, Ziele selektiv zu multiplexen. In dieser Studie wurde eine Methode der Tag-Probe-Markierung entwickelt, die eine selektive, gleichzeitige Markierung von zwei verschiedenen Zielen mit zwei Peptid-Nukleinsäure-Strängen (PNA) ermöglicht. Diese Methode verwendet ein Paar von Coiled-Coil-Peptiden, um die Konjugation einer PNA-Gruppe an ein Zielprotein zu steuern, das ein Peptid-Tag exprimiert. Die Verwendung orthogonaler Coiled-Coils ermöglicht Multiplexing. Die Markierung von synthetischen Tag-Peptiden, die mittels Flüssigchromatographie analysiert wurden, hat gezeigt, dass der orthogonale duale Transfer von PNA selektiv, quantitativ und schnell ist. Die PNA-Konjugation von exemplarischen Membranrezeptoren, gefolgt von der Hybridisierung mit komplementären Fluorophor-DNAs, ermöglichte eine unkomplizierte Visualisierung von dualen Rezeptoren in lebenden Zellen. Durch den Einsatz einfacher molekularer Hilfsmittel, die die Grundlage der DNA-Nanotechnologie bilden, konnte durch die Rekrutierung mehrerer DNAs eine zunehmend hellere Markierung erreicht werden und die löschbare Oberflächenmarkierung ermöglichte eine quantitative Untersuchung der Rezeptorinternalisierung. / Live-cell fluorescent labelling techniques allow biologists to glimpse into a complex biological environment and derive information about a specific target in a near-native environment. Thanks to a concerted effort from the scientific community, a plethora of commercially available, genetically encodable tags and reporters for fluorescence microscopy exist. However, few live-cell methods allow direct conjugation of nucleic acids with proteins despite the robust DNA technologies carried out on cell surfaces using oligo-antibody conjugates. Another aspect of labelling which is often limiting is the ability to selectively multiplex targets. In this study, a method of tag–probe labelling was developed that accomplishes selective, simultaneous labelling of two distinct targets with two peptide nucleic acid (PNA) strands. The technique uses a pair of coiled-coil peptides to guide conjugation of a PNA group to a target protein expressing a peptide tag and using orthogonal coiled-coil enables multiplexing. Initially, the labelling of synthetic tag-peptides analysed by liquid chromatography revealed the orthogonal dual transfer of PNA to be selective, quantitative, and rapid. PNA conjugation of exemplar membrane receptors followed by hybridization with complementary fluorophore-DNAs achieved straightforward live-cell dual receptor visualization. Finally, using simple molecular tools that form the basis of DNA nanotechnology, recruitment of multiple DNAs facilitated progressively brighter labelling, and erasable surface labelling allowed quantitative study of receptor internalisation.
8

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 12 June 2018 (has links) (PDF)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.
9

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 26 March 2018 (has links)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.

Page generated in 0.0666 seconds